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Measuring Sta-s-cal Bias in Data Using Entropy 
 
Introduc*on  
Sta$s$cal, cogni$ve, and social systemic biases are the latest threats to the stability of actuarial 
models, garnering unwanted a9en$on from regulators. Measuring sta$s$cal bias poses fewer 
challenges than measuring social systemic or cogni$ve biases, the la9er of which is nearly 
impossible to measure. Some of the bias tes$ng approaches can detect bias toward protected 
classes, a primary interest of regulators, but such tes$ng requires iden$fying protected class 
a9ributes and a9aching them to outcomes for bias tes$ng. Insurers do not collect race and many 
other protected class a9ributes, and exis$ng inference methods have proven to be unacceptably 
inaccurate by most standards. This paper will not solve all these issues, but, instead, will 
demonstrate how entropy, a measure of informa$on content, can be used to quan$fy the level 
of homogeneity in a data field. The more homogeneous the values in a data field, the more biased 
the elements in the field toward one value, and the lower the entropy metric. Similarly, the less 
homogeneous the values in a field, the more diverse the values, and the higher the entropy 
metric. High entropy may be appropriate depending on the expected values for a field. Likewise, 
low entropy may be appropriate and desired for a given field. This paper simply demonstrates 
how entropy metric can be used to quan$fy the level of bias or diversity in data, against 
acceptable tolerances.  
  
Founda*ons of Entropy 
Entropy has its roots in the informa$on theory that underpins early digital communica$on. 
History recognizes four pioneers in the founding of informa$on theory: Harry Nyquist, Ralph 
Hartley, Nobert Weiner, and Claude Shannon. Unsurprisingly, all four had connec$ons to Bell Labs, 
which is considered the birthplace of informa$on theory.1 Harry Nyquist authored “Certain 
Factors Affec$ng Telegraph Speed,” in 1924. The paper theorized how to transmit the maximum 
amount of informa$on over a circuit2 and contains a theore$cal sec$on quan$fying "intelligence" 
and the "line speed" at which it can be transmi9ed by a communica$on system. Ralph Hartley 
authored “Transmission of informa$on” in 1928.3 In the paper, Hartley derives the following 
formulaic measure of informa$on: 

H = n log S = log Sn. 

In this formula, S represents the number of possible symbols that can form a transmission, n 
represents the actual number of symbols in a transmission, and H is the measure of informa$on 
in a transmission. Nobert Weiner authored, “Cyberne$cs: Or Control and Communica$on in the 
Animal and the Machine,” in 1948, which describes the probability density func$on for 

 

1 Georgescu, I. (2022). Bringing back the golden days of Bell Labs. Nature Reviews Physics, 4(2), 76-78. 
2 Nyquist, H. (1924). Certain factors affecJng telegraph speed. Transac4ons of the American Ins4tute of Electrical 
Engineers, 43, 412-422. 
3 Hartley, R. V. (1928). Transmission of informaJon 1. The Bell System Technical Journal, 7(3), 535-563. 
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con$nuous informa$on.4 Weiner believed that informa$on was measurable and could be 
studied using sta$s$cs.5  

Despite the contribu$ons of Nyquist, Hartley, and Weiner, Shannon is widely acknowledged as 
the “Father of Informa$on Theory,” mainly because he devised a complete framework for 
describing digital communica$ons.6 Shannon published “A Mathema$cal Theory of 
Communica$on”7 in 1948 clearly dis$nguishing the delivery of a message from its meaning as 
depicted below.  

The process starts with a sequence of symbols that the sender wishes to transmit to the 
receiver at a specific des$na$on. The symbols must be digi$zed and passed through an 
encoding algorithm.  

 

The encoded message is then passed through a medium such as wires, cable, phone lines, etc., 
to a decoding algorithm that converts the signal back into the original sequence of symbols. 
There is the poten$al for noise to interfere with the transmi9al of the encoded message which 
would result in a distorted message once decoded.  

The encoding of a message involves determining the least amount of informa$on needed to 
correctly transmit a message and have it correctly interpreted a\er transmission. Shannon 
theorizes that any message be correctly determined using a series of ques$ons where the only 
two responses are “yes” or “no,” which can be encoded as either a “0” or a “1,” i.e., binary digits 
or bits. The first use of the term “bit” can be traced back to Shannon’s trea$se on the theory of 
communica$ons.8 The minimum number of bits required to reduce the uncertainty of a 
message by one-half at each stage of ques$oning un$l uncertainty is zero, is the measure of 
informa$on contained in a message. For example, let’s say we have eight cards from a deck all 
face down—only one card is a King, and we seek to determine which one. 

 

4 “Norbert Wiener Issues Cyberne4cs, the First Widely Distributed Book on Electronic CompuJng”; History of 
InformaJon; 2012. 
5 “CyberneJcs”; Bulle4n of the American Academy of Arts and Sciences; April 1950. 
6 “Claude Shannon”; Encyclopedia Britannica; April 26, 2025. 
7 “A MathemaJcal Theory of CommunicaJon (Shannon, C. E.)”; The Bell System Technical Journal; July and October 
1948. 
8 “A MathemaJcal Theory of CommunicaJon (Shannon, C. E.)”; The Bell System Technical Journal; July and October 
1948. 

https://www.historyofinformation.com/detail.php?id=664
https://www.jstor.org/stable/3822945?seq=2
https://www.britannica.com/biography/Claude-Shannon
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
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We could turn over one card at a $me un$l the King is found, but it could take one, if you are 
lucky, or seven tries before the King is found. Shannon proposed a more systema$c way to 
determine the maximum number of tries needed to determine the King with certainty. The 
approach might ask the following ques$ons:  

1. Is the King in the top row? If the answer is “No,” then it must be in the bo9om row.  
 

 
2. Is the King one of the two right most cards? If the answer is “No,” then it must be one of 

the two le\ most cards. 

 
 

3. Finally, is the King the le\ card? If the answer is “No,” then the King must be the right card. 
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To summarize, we started out with eight cards and asked three “yes” or “no” ques$ons before 
determining where the King was with certainty. It is no coincidence that we have 

8 = 23. 

We can rewrite this expression as:  

log2(8) = log2(23) 

 log2(8) = 3 

The calcula$on says that it takes three bits (“yes” or “no” responses coded as “1” or “0”) of 
informa$on to determine a message with certainty given eight symbols. It is noteworthy that the 
maximum number of guesses needed is far less than seven. 

Shannon’s formula$on of the same problem defines informa$on in terms of probabili$es. We 
have  

𝐼(𝑥) = 𝑙𝑜𝑔!
1

𝑝(𝑥)
= −𝑙𝑜𝑔!𝑝(𝑥) 

Since the probability of selec$ng the King is 1/8, the informa$on associated with the selec$on is 

𝐼(𝐾𝑖𝑛𝑔) = 𝑙𝑜𝑔!
1

𝑝(𝐾𝑖𝑛𝑔)
= −𝑙𝑜𝑔! /

1
8
1 = 3 

 
The informa$on associated with not picking the King is  
 

𝐼(𝑁𝑜𝑡𝐾𝑖𝑛𝑔) = 𝑙𝑜𝑔!
1

𝑝(𝑁𝑜𝑡𝐾𝑖𝑛𝑔)
= −𝑙𝑜𝑔! /

7
8
1 = 0.19265 

 

The informa$on is higher when the probability is lower. 
 
 What Is Entropy?  
The most basic defini$on of entropy is a measure of disorder or randomness in a system. It is a 
measure that has been used in thermodynamics, informa$on theory, sta$s$cal mechanics, 
dynamical system theory, fractal geometry, biology, machine learning, economics and finance, 
and other fields.9 As previously discussed, the higher the entropy, the more uncertainty (disorder 
or randomness) in the system. The importance of entropy in the field of informa$on theory has 
already been discussed. The following discussion will provide insights into the u$lity of entropy 
in thermodynamics, sta$s$cs, finance and economics, and machine learning. Later in this paper, 
entropy is described as a measure for diversity (and bias as an opposite concept). The entropy of 
mortality tables will be discussed in this context. 
 
 
 
 

 

9 “Entropy – A Guide for the Perplexed”; PhilSci Archive journal; Frigg and Werndl (2010). 

https://philsci-archive.pitt.edu/8592/1/EntropyPaperFinal.pdf
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Entropy in Thermodynamics 
Thermodynamics studies the rela$onships between work, heat, temperature, and energy. Four 
laws govern the interplay between these four elements. They are:10 
 

1. The zeroth law of thermodynamics—Two systems in thermal equilibrium with a third are 
in thermal equilibrium with each other. 

2. The first law of thermodynamics—Energy cannot be created or destroyed. It is conserved.  
3. The second law of thermodynamics—Systems tend toward disorder and will never reverse 

toward an ordered state. Disorder states have higher entropy than ordered states.  
4. The third law of thermodynamics—The entropy of a perfect crystal at absolute zero 

temperature is zero. 
 
There are three types of systems that are important in thermodynamics: Open, closed, and 
isolated. Each system type plays a significant role in determining how energy and ma9er is 
exchanged within a system and the surrounding environment. An open system allows energy and 
ma9er to move from inside the system to outside the system. Boiling water in a ke9le is a good 
example.11 Water from inside the ke9le escapes through the spout of the ke9le in the form of 
steam.  
 
The following graph illustrates the piecewise change in entropy (S(cal/K) for one mole of water 
that changes from a solid to a liquid and then to a vapor as the temperature increases (Celsius).12  
 
A closed system allows energy, but not ma9er, to be transferred within and with the outside 
surrounding environment. A closed bo9le of water does not allow the water to escape, but the 
water can change states. It can transi$on from hot to cold and cold to hot depending on the 
outside environment. Finally, an isolated system does not allow the exchange of energy or ma9er 
with the surrounding environment. The universe is an example of an isolated system, because 
neither energy nor ma9er is able to enter or leave. 13 
 
To gain an apprecia$on of these four laws, researchers have examined how to apply them to the 
state of a runner’s body,14 which represents an open system, to understand how the runner’s 
body consumes and transforms energy. A runner’s body needs and converts several types of 
energy from the start to the comple$on of a run—chemical energy, poten$al energy, and kine$c 
energy. The body derives chemical energy from proteins, carbohydrates, and fats.15 When the 
body engages in work, it burns chemical energy in the form of calories, giving off heat whose unit 
is joules. One calorie is roughly 4.186 joules. Running, like any ac$vity, requires chemical energy 

 

10 “Thermodynamics”; Encyclopedia Britannica; August 2025. 
11 “30 Examples of Open, Closed and Isolated Systems”; Examples Lab; 2018. 
12 Masterton WL, Solwinski, EJ, (1973), Chemical Principles, WB Saunders Company, p 333. 
13 “The EquaJon of the Universe (According to the Theory of RelaJon)”; Journal of Modern Physics; 2019. 
14 “Entropy Measures Can Add Novel InformaJon to Reveal How Runners’ Heart Rate and Speed Are Regulated by 
Different Environments”; Fron4ers in Psychology; June 4, 2019. 
15 “How the Body Uses Energy”; Rockets Sports Medicine InsJtute; June 3, 2019. 
 

https://www.britannica.com/science/thermodynamics
https://www.exampleslab.com/30-examples-of-open-closed-and-isolated-systems/
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2019.01278/full
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2019.01278/full
https://memorialhermann.org/services/specialties/rockets-sports-medicine-institute/sports-nutrition/how-the-body-uses-energy
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to create the necessary biological work to move the body from point A to point B. During the 
running process, the human body converts poten$al energy into kine$c energy back into 
poten$al energy and the pa9ern repeats throughout the run. Poten$al energy is associated with 
the posi$on of an object, while kine$c energy is associated with the mo$on of an object. An 
object at rest stores poten$al energy, while an object in mo$on stores kine$c energy. The two 
forms of energy are inversely related. When one is high, the other is low.  
 
The human body is in a res$ng posi$on at the start of a run, harboring a store of poten$al energy. 
As the runner commits work to start the run cycle, poten$al energy is transformed into kine$c 
energy as the runner climbs in flight to reach the double float posi$on, when both feet are off the 
ground. The shi\ back to poten$al energy occurs during the double float phase of the run, and, 
almost as fast as it occurred, poten$al energy is converted back to kine$c energy as gravity brings 
one foot back in contact with the ground. The process repeats un$l the run is over and the body 
returns to a res$ng, and possibly exhausted, posi$on. Since entropy is a measure of disorder, 
kine$c energy has higher entropy than poten$al energy, because an object in mo$on is more 
disordered than an object at rest. Researchers found that runners exhibit higher entropy when 
running on a 400-meter track than running along routes that are more familiar or unusual.16 The 
researchers hypothesized that running monotonous routes caused runners to vary speeds more 
in an a9empt to increase their arousal levels to stay engaged. This suggests routes that have more 
to offer visually, or more unusual terrains, are best for the training regimen of runners, because 
high entropy was also found to produce more erra$c heart rates.  
 
Entropy in Sta3s3cs 
Rudolf Carnap’s cri$que of classical thermodynamics included the argument that entropy in 
thermodynamics has the same character as other thermodynamic concepts such as heat, 
pressure, temperature, etc., which serve “for the quan$ta$ve characteriza$on of some objec$ve 
property of a state of a physical system.” From this star$ng point, his aim was to construct a 
sta$s$cal concept of entropy. He classified concepts along the spectrum of entropy from physical 
property to a nonphysical concept.17 
 
Carnap’s system of conceptual classifica$on assigns the elements to be classified into k cells C j 
(j=1, … ,k) each with an individual descrip$on Dconcept. A quan$ta$ve classifica$on descrip$on 
Dquant corresponds to each individual descrip$on Dconcept. Dquant assigns the number nj of elements 
classified into each cell Cj. Of par$cular interest is when there is a uniform distribu$on of nj of 
elements across each cell C j. Carnap labels this the degree of order of Dconcept that has the uniform 
distribu$on. 
 
 

 

16 Exel, J., Mateus, N., Gonçalves, B., Abrantes, C., Calleja-González, J., & Sampaio, J. (2019). Entropy measures can 
add novel informaJon to reveal how runners' heart rate and speed are regulated by different 
environments. Fron4ers in Psychology, 10, 1278. 
17 Carnap, R (1952 and 1954) in Two Essays on Entropy edited by Shimony, A, (1977), University of California Press. 
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In Carnap’s unpublished paper, “The Concept of Degree of Order,” the term randomness (as 
defined in Sta$s$cs) refers to a characteris$c of the procedure of selec-on of a sample from a 
given popula$on. A procedure is defined as random if all possible samples of the same size have 
uniform distribu$on, hence randomness is not a characteris$c of the mathema$cal structure of 
the sample. On the other hand, he concludes that the degree of disorder is a characteris$c of 
mathema$cal structure. In other words, entropy is a mathema$cal func$on. 
 

Entropy, the uncertainty (disorder, diversity, or randomness) func$on, is a real number 
associated with any probability distribu$on on a finite set. A probability distribu-on is defined 
for 𝑛 ≥ 1 on a finite set [1, …, n] is a p = (p1, …, pn) of real numbers pi ≥ 0 such that ∑pI = 1. For 
𝑛 ≥ 1, write 

 ∆𝑛 = [𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑜𝑛	[1, …, 𝑛]], 

where n is the number of outcomes of the distribu$on. Appendix A has a coin toss example 
(n=2), dice example (n=6), and an alphabet example (n=4). 

The (Shannon) Entropy of p is  

   	

𝐻(𝒑) =9p! log(
1
𝑝!
)

"

!#$

 

 

In case of comparing entropies with different n’s, the normalized entropy is 𝐻(𝒑) / log n, which 
produces results between zero and one that may be used for comparisons. The normalized 
entropy is used below in the comparison of the deferred distribu$on of death n | q(x) at 
different ages of life table. 

Below are four sample distribu$ons with entropy in the range from zero to two. 
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Decreasing Entropy          Increasing Entropy 

 

 Certainty      Uncertainty 
 Order       Disorder 
 High Bias       Low Bias 
 Non-Randomness     Randomness 
 Higher Informa$on     Lower Informa$on   
  
The higher the entropy, the more uncertainty (disorder, diversity, or randomness) in the system. 
The highest entropy equals two (log base 2 of 4 is 2) for the uniform distribu$on, which has the 
most disorder, diversity, or randomness. The lowest entropy above equals zero for a distribu$on 
completely in a single classifica$on, which has the most order, bias, and non-randomness. 
Entropy is a measure for both bias and diversity, but as illustrated above, bias is the opposite of 
diversity. 

Appendix A provides further examples of the calcula$on of entropy for a coin toss example, dice 
example, alphabet example, and con$nuous probability distribu$ons. 

 
Entropy in the Stock Market 
There are many examples of the use of entropy in finance and economics. The randomness of the 
stock market has been extensively studied. All sorts of factors, systema$c and unsystema$c, 
influence the price of a stock at any moment in $me. Vola$lity—the standard devia$on of a 
stock’s price (or return), denoted by σ (sigma)—is a familiar metric that has been used to es$mate 
the randomness of a stock’s price. A companion metric is Beta (β), which measures a stock’s 
systemic risk rela$ve to the stock market as a whole. Since entropy is a measure of disorder, it is 
not unreasonable to examine its u$lity to measure the randomness of a stock’s price, and many 
researchers have. Approximate Entropy is “a sta$s$cal measure of the level of randomness of a 
data series which is based on coun$ng pa9erns and their repe$$ons.”18 The presence of pa9erns 
suggests non-randomness and order. Therefore, low approximate entropy implies more 
predictability in the movement of a stock’s price, whereas high approximate entropy implies less 
predictability. One issue to be aware of is that approximate entropy is very sensi$ve to sample 
size. A small sample size can adversely impact the sta$s$cal significance of the Chi-square 
measure associated with approximate entropy. A sample size of N > 200 is recommended. 
 
 
 
 

 

18 “QuanJfying the randomness of the stock markets”; ScienJfic Reports; Sept. 4, 2019.  

https://doi.org/10.1038/s41598-019-49320-9
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Approximate Entropy (ApEn) is a measure designed to find pa9erns of length m in a sequence of 
numbers or $me series. When APEn is low, no pa9ern was discernible. When ApEn is high, a 
pa9ern is discernible, predictable, and non-random. Formulaically, it is defined as 19 
 

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑛) = 𝜙#(𝑟) − 𝜙#$%(𝑟) 
where, 

𝜙#(𝑟) =
1

𝑛 −𝑚 + 1
C 𝑙𝑜𝑔	E𝐶&#(𝑟)G

'(#$%

&)%

 

 

𝐶&#(𝑟) =
𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑗𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑑[𝑥(𝑖), 𝑥(𝑗)] ≤ 𝑟

𝑛
 

 
𝑑[𝑥(𝑖) = [𝑢(𝑖), 𝑢(𝑖 + 1), …𝑢(𝑖 + 𝑚 − 1)] 

 
𝑤ℎ𝑒𝑟𝑒 = 1 ≤ 𝑖 ≤ 𝑛 

 
§ x(i)	is	an	m-dimensional	vector	that	contains	the	run	of	data	

starting	with	u(i). 
§ u(i)	represents	a	data	time	series	equally	spaced	in	time. 

 
It is necessary to understand the components and parameters of the approximate entropy 
formula to fully understand how it measures the entropy of a stock’s return. Sample size is 
denoted by n. The 𝑟	parameter is a similarity threshold for pa9ern acceptance,20 where a value 
greater than 𝑟 indicates values are related and a value less than 𝑟, indicates they are not. In the 
example below, this parameter will be set equal to the median, since a stock can go up or down. 
The approximate entropy of a stock is an indica$on of the predictable up and down pa9ern in its 
price. The parameter m is defined as the length of the data segments being compared for 
similari$es� The data segment in the $me series is defined as  
 

𝑥(𝑖) = [𝑢(𝑖), 𝑢(𝑖 + 1), …𝑢(𝑖 + 𝑚 − 1)]. 
 
If m =	2,	then the data segment is  

 
𝑥(𝑖) = [𝑢(𝑖), 𝑢(𝑖 + 1)] 

 
Here 𝑥(𝑖) represents two consecu$ve elements in the $me series. The func$on 𝐶&#(𝑟)compares 
all pairwise differences d. It is called a correla$on integral, and it is a measure of closeness 
between data segments. The numerator of 𝐶&#(𝑟) counts the number of data segments of 
consecu$ve values of length m less than the threshold 𝑟.21 
 

 

19 Leinster, T (2021). Entropy and Diversity, The Axioma4c Approach. p41. Cambridge University Press. 
20 “Approximate entropy”; Wikipedia; 2025. 
21 “A comprehensive comparison and overview of R packages for calculaJng sample entropy”; Biology Methods and 
Protocols; 2019; Chang Chen, Shixue Sun, Zhixin Cao, Yan Shi, Baoqing Sun, Xiaohua Douglas Zhang.   

https://en.wikipedia.org/wiki/Approximate_entropy
https://doi.org/10.1093/biomethods/bpz016
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Example 
Let’s say a $me series of 10 returns is given by:  
 

U = {0.97%, 0.37%, -0.12%, 0.07%, 0.27%, 0.26%, -0.20%, 0.16%, 0.07%, 0.08%} 
 
The sample size is purposefully small to facilitate the applica$on of the formulas. Assume m = 2 
and r = 0.2% 
 
We can form the sequence of x(i) vectors as: 
 

x(1)	=	[u(1),	u(2)]	=	[0.97%,	0.37%] 
x(2)	=	[u(2),	u(3)]	=	[0.37%,	-0.12%] 
x(3)	=	[u(3),	u(4)]	=	[-0.12%,	0.07%] 
x(4)	=	[u(4),	u(5)]	=	[0.07%,	0.26%] 
 .   
 . 
 . 

  
The next step is to calculate all the differences d	for	all values of dimension equal to 1, m, and 
m+1. The values of d  for dimension equal to one are needed to define the r, while the ApEn 
formula is calculated using ϕ(m) and ϕ(m+1). Therefore, we need to define x(i) for each ϕ 
func$on as follows: 
 

ϕ(m):	 	 	𝑥(𝑖) = [𝑢(𝑖), 𝑢(𝑖 + 1), …𝑢(𝑖 + 𝑚 − 1)] 
ϕ(m	+1):	 	𝑥(𝑖) = [𝑢(𝑖), 𝑢(𝑖 + 1), …𝑢(𝑖 + (𝑚 + 1) − 1)] 

 
For m =2, we have, 

 
ϕ(2):	 	 	𝑥(𝑖) = [𝑢(𝑖), 𝑢(𝑖 + 1)] 
ϕ(3):	 		 𝑥(𝑖) = [𝑢(𝑖), 𝑢(𝑖 + 1), 𝑢(𝑖 + 2)] 

 
The calcula$ons to fill in the lower triangle of a correla$on matrix is depicted below.  
 
d[x(1),	x(1)]      
d[x(2),	x(1)] d[x(2),	x(2)]     
d[x(3),	x(1)] d[x(3),	x(2)] d[x(3),	x(3)]    
d[x(4),	x(1)] d[x(4),	x(2)] d[x(4),	x(3)]    

… ... …  d[x(9),	x(9)]  
d[x(10),	x(1)] d[x(10),	x(2)] d[x(10),	x(3)] … d[x(10),	x(9)] d[x(10),	x(10)] 
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The formula for d	will verify that all the diagonal elements are equal to zero. The rest of the matrix 
is filled by reflec$ng the lower triangular values in the upper triangle. The matrix arithme$c is the 
same for dimensions m, and m+1. The only difference is the length of the data segments involved 
in the arithme$c, as follows: 
 

For	m	=	2:	𝑥(𝑖) = [𝑢(𝑖), 𝑢(𝑖 + 1)] 
For	m	=	3:	𝑥(𝑖) = [𝑢(𝑖), 𝑢(𝑖 + 1), 𝑢(𝑖 + 2)] 

 
For m =1, d involves subtrac$ng vectors of length one. For m =2, d involves subtrac$ng vectors of 
length two, and for m =3, d involves subtrac$ng vectors of length three. The idea is to look for 
pa9erns of length one, two, and three in the $me series. Take the simple sequence:22 
 
  U51 = {85, 80, 89, 85, 80, 89, 85, 80, 89, 85, 80, 89, …}  
 
For	m	=	2,	we	have 
	  
	 d	[x(1),	x(1)]	=	max|{85,	80}	–	{85,	80}|	=	max	|85	–	85,	80	–	80|	=	0 

d	[x(1),	x(2)]	=	max|{85,	80}	–	{80,	89}|	=	max	|85	–	80,	80	–	89|	=	9 
d	[x(1),	x(3)]	=	max|{85,	80}	–	{89,	85}|	=	max	|85	–	89,	80	–	85|	=	9 
d	[x(1),	x(4)]	=	max|{85,	80}	–	{85,	80}|	=	max	|85	–	85,	80	–	80|	=	0 
	 . 
	 . 
	 . 
 

For	m	=	3,	we	have 
	  
d	[x(1),	x(1)]	=	max|{85,	80,	89}	–	{85,	80,	89}|	=	max	|85	–	85,	80	–	80,	89	–	89|	=	0 
d	[x(1),	x(2)]	=	max|{85,	80,	89}	–	{80,	89,	85}|	=	max	|85	–	80,	80	–	89,	89	–	85|	=	9 
d	[x(1),	x(3)]	=	max|{85,	80,	89}	–	{89,	85,	80}|	=	max	|85	–	89,	80	–	85,	89	–	80	|	=	9 
d	[x(1),	x(4)]	=	max|{85,	80,	89}	–	{85,	80,	89}|	=	max	|85	–	85,	80	–	80,	89	–	89	|	=	0 

. 
	 . 
	 . 
 

	
	
	
	
	
	
	

 

22 “Approximate Entropy and Sample Entropy: A Comprehensive Tutorial”; NaJonal Library of Medicine; May 2019. 
 

https://pmc.ncbi.nlm.nih.gov/articles/PMC7515030/


Page 12 

Since	the	simple	sequence	shows	a	clear	pattern,	 the	difference	matrices	will	also	show	a	
pattern,	 and	 that	 pattern	 will	 be	 quantiiied	 by	 the	 correlation	 integrals,	 𝐶&#(𝑟).	 The	
correlation	integrals	count	the	number	of	differences	that	are	within	the	similarity	tolerance,	
r,	 and	 divide	 the	 result	 by	 the	 total	 number	 of	 differences.	 They	 are	 the	 probabilities	 of	
differences	being	less	than	the	similarity	tolerance	and	they	are	needed	for	the	ϕ	function.	
Each	column	of	the	difference	matrix	produces	a	𝐶&#(𝑟)	for	each	𝑖	in	1	≤ 𝑖 ≤ n	–	m	+	1.	The 
entropy formula is  

𝜙#(𝑟) =
1

𝑛 −𝑚 + 1
C 𝑙𝑜𝑔	E𝐶&#(𝑟)G

'(#$%

&)%

 

And	iinally,	ApEn	is	given	by	

𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑛) = 𝜙#(𝑟) − 𝜙#$%(𝑟) 

In	our	sample	of	returns,	we	have 

𝐴𝑝𝐸𝑛(2,0.2%, 10) = 𝜙*(0.2%) − 𝜙+(0.2%) 
𝐴𝑝𝐸𝑛(2,0.2%, 10) = (−1.27) − (−1.56) = 0.29 

While beyond the scope of this paper to derive, it is possible to calculate the Chi-Squared sta$s$c 
for this result and its p-value. The Chi-Squared result is  

𝜒* = 8.01       on 4 degrees of freedom, p-value = 0.0911 

This result is not sta$s$cally significant, which means there is no discernible pa9ern in the 
movements of the stock’s price. The movement in the small sample appears to be random.  

For the simple sequence, 

U51 = {85, 80, 89, 85, 80, 89, 85, 80, 89, 85, 80, 89, …}, 

the Chi-Squared result is  

𝜒* = 56.84 on 4 degrees of freedom, p-value = 1.337e-11 

This result is sta$s$cally significant and expected since the repea$ng pa9ern in the sequence is 
quite apparent. This result means the pa9ern is regular and predictable. Addi$onal discussion of 
this sequence can be found at the link in the footnote.23 The addi$onal tables suppor$ng the 
calcula$on of the Approximate Entropy of the stock returns can be found in Appendix B. 

23 “Approximate entropy”; Wikipedia; 2025. 

https://en.wikipedia.org/wiki/Approximate_entropy
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Machine Learning 
The breakthrough of the use of entropy in machine learning is credited to Australian computer 
scien$st, John Ross Quinlan. Quinlan is the inventor of the powerful ID3, C4.5 and C5.0 algorithms 
that are the engines for many decision tree algorithms. The C5.0 algorithm is an improvement 
over the C4.5 algorithm, and C4.5 is an improvement of the ID3 algorithm. The major difference 
between C5.0 and C4.5 is that C5.0 builds a rule set that C4.5 does not. Otherwise, the two 
algorithms leverage the same mathema$cs to determine how to make op$mal splits in data to 
create homogeneous terminal nodes in a decision tree. A related concept to entropy that is 
important to discuss before examining how entropy is applied to decision trees is informa-on 
gain. 
 
Informa$on gain is a measure that aids in determining the best feature to split the data at each 
node of a decision tree. 24 It is calculated as the difference between the entropy for a node before 
it is split and the probability weighted entropies of children nodes a\er a proposed split from 
their parent node. The feature split resul$ng in the maximum informa$on gain is the best feature 
for decision tree node splits.  
 
Let’s consider the following data that reflects three features (Age, Mileage, Road Tested) and one 
outcome (Buy Decision) to build a decision tree for the purchase decision of a used car.25 
 

Age Mileage Road Tested Buy Decision 

Recent Low Yes Buy 

Recent High Yes Buy 

Old Low No Don’t Buy 

Recent High No Don’t Buy 

 
The decision tree is trying to determine the best spli|ng rule that will lead to the most 
homogenous or pure children nodes. The best spli|ng rule will result in all the “Buy” decisions 
in one terminal node and all the “Don’t Buy” decisions in the other node a\er the split. The 
parent node reflects all the decisions before any rules are applied. 
 
 

 

24 Tangirala, S. (2020). EvaluaJng the impact of GINI index and informaJon gain on classificaJon using decision tree 
classifier algorithm. Interna4onal Journal of Advanced Computer Science and Applica4ons, 11(2), 612-619. 
25 “Decision tree: Part 2/2. Entropy and InformaJon Gain”; TDS Archive; Sept. 6, 2019. 

https://medium.com/data-science/decision-tree-part-2-34b31b1dc328
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We can calculate the entropy of the root node as: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −𝑃𝑟𝑜𝑏(𝐵𝑢𝑦) ∗ 𝑙𝑜𝑔*(𝐵𝑢𝑦) − 𝑃𝑟𝑜𝑏(𝐷𝑜𝑛,𝑡𝐵𝑢𝑦) ∗ 𝑙𝑜𝑔*(𝐷𝑜𝑛,𝑡𝐵𝑢𝑦) 

 = −_%
*
` ∗ 𝑙𝑜𝑔* _

%
*
` − _%

*
` ∗ 𝑙𝑜𝑔* _

%
*
`   

=   1.0 

This value is important for calcula$ng informa$on gain, which is used to determine the best split 
of the parent node into two child nodes. There are three possibili$es for spli|ng the tree at the 
parent node. We can split on the Age, Mileage, or Road Tested variables and for each of these 
variables, there are two choices. It is possible to use con$nuous variables for spli|ng decisions 
as well. For simplicity, this example will focus on the binary choices for each of the three 
variables. The one that leads to the largest informa$on gain is the op$mal variable for spli|ng 
the tree at the parent node. 

 

For the Age variable, the visualiza$on of the split is depicted below. Informa$on gain is a 
spli|ng criterion based on entropy.  
 

 
 
The weighted entropy for the child nodes is given by 
 

𝐶ℎ𝑖𝑙𝑑𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
1
4
∗ (0) +

3
4
∗ (0.918) = 0.688 

 

The informa$on gain is given by 
 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛 = 1 − 0.688 = 0.3112 
 
We repeat this exercise for the Mileage and Road Tested variables.  
 
 

Buy – 2 Instances 
Don’t Buy – 2 Instances 

Prob(Buy) = 1/2 
Prob(Don’t Buy) = 1/2 
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The Mileage binary outcomes are  
 

1. Low Mileage  
2. High Mileage 

 
If the parent node is classified by the Mileage variable, the composi$on of children nodes is 
depicted below.  
 

 

 
The weighted entropy for the child nodes is given by 
 

𝐶ℎ𝑖𝑙𝑑𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
1
2
∗ (1) +

1
2
∗ (1) = 1.00 

 
The Informa$on Gain is given by 
 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛 = 1 − 1 = 0.0 
 
Finally, the Road Tested variable binary outcomes are  
 

1. Yes 
2. No 
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If the parent node is classified by the Road Tested variable, the composi$on of children nodes is 
depicted below.  
 

 

 

The weighted entropy for the child nodes is given by 
 

𝐶ℎ𝑖𝑙𝑑	𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
1
2
∗ (0) +

1
2
∗ (0) = 0.00 

 
The informa$on gain is given by 
 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝐺𝑎𝑖𝑛 = 1 − 0 = 1.0 
 
In summary, the informa$on gain from the three variables is summarized below. 
 

Variable Information Gain 

Age 0.3112 

Mileage 0.000 

Road Tested 1.000 

 
The maximum informa$on gain results from spli|ng the parent node on the Road Tested 
variable. This means the most homogeneous groupings on the children node occurs when we 
split on the Road Tested variable. Whether a car is road tested or not is the best decision rule 
for predic$ng buying decision. There is no need to consider the age of the vehicle or the 
mileage in establishing a decision rule that op$mally segments the data. Segmenta$on like in 
this example is the goal of a decision tree analysis. The end product is a set of rules that 
segment the data into homogeneous groups, and entropy is the measure from developing the 
decision rules.  
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When there are two outcomes on a variable, the maximum entropy is 1.0. When there are four 
outcomes, the maximum entropy is two. For eight outcomes, the maximum is 3.0. The pa9ern 
follows the following mathema$cal rela$onships: 

Log2(2) = 1 

Log2(4) = 2 

Log2(8) = 3 

Log2(16) = 4 

. 

. 

. 
Log2(X) = Y 

The general formula works for all values of X ⸦ {1, 2, 3, 4, 5, 6, …} not just those values that are 
powers of two.  

 
Maximum Entropy Classifier Model 
The maximum entropy classifier model is a generaliza$on of the naïve Bayes classifier model.26 
Instead of using probabili$es for the parameters, it uses itera$ve op$miza$on to find the 
parameters. It lowers entropy (increases informa$on) with each step in the itera$on. 

The intui$on related to maximum entropy classifica$on is that the model would capture 
frequencies of the joint variables without making unwarranted assump$ons. For example, the 
model would ini$ally select Distribu$on 1 even though any of these distribu$ons are correct. 
Distribu$ons 2 and 3 would reflect assump$ons currently not known. 

Distribu$on A B C D E 

1 20% 20% 20% 20% 20% 

2 5% 25% 35% 25% 10% 

3 0% 100% 0% 0% 0% 

 

 

 

 

 

 

 

26 Bird, Klein, Loper. Natural Language Processing with Python. O’Reilly. 2009. Pages 252-253. 
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The maximum entropy principle states that the distribu$on chosen, among the distribu$ons 
consistent with the known informa$on, is the distribu$on that has the highest entropy. That is, 
the remaining variables are ini$ally set to the uniform distribu$on. Again, the model would 
select Distribu$on 4 when variable A is known to have a 60% frequency. Distribu$ons 5 and 6 
would reflect assump$ons currently not known. 

Distribu$on A B C D E 

4 60% 10% 10% 10% 10% 

5 60% 5% 15% 15% 5% 

6 60% 3% 5% 7% 25% 

 

The itera$ve op$miza$on con$nues to find all the parameters. The calcula$on of maximum 
entropy for the distribu$on uses itera$ve op$miza$on to find the parameters.  

 

Hospitaliza3on Decision Tree 
The goal of using entropy to build classifica;on trees is to split the data such that each subset has lower 
entropy (more informa;on) than the original set. This has par;cular importance in health care. 

At a health insurance company, nurses must efficiently triage thousands of pre-cer;fica;on requests for 
hospital admissions. Tradi;onal guidelines relying on fixed criteria may not capture the complex interplay 
between clinical factors. Entropy-based classifica;on trees can enhance this process by quan;fying the 
predic;ve value of specific clinical indicators. Instead of applying uniform and oIen narra;ve-based 
guidelines, we can develop more sophis;cated review triggers based on the informa;on gained from 
various clinical factors. Then we can systema;cally test these more objec;vely derived guidelines for 
biases against certain popula;ons. 

From a risk classifica;on perspec;ve, these methods can substan;ally complement tradi;onal actuarial 
approaches. While actuaries have historically relied on age-sex factors and broad diagnos;c categories 
for risk adjustment, entropy-based spliNng can iden;fy more nuanced clinical paOerns. For instance, we 
might discover that for diabe;c pa;ents, the combina;on of HbA1c levels and medica;on adherence 
creates more homogeneous risk pools than the standard complica;ons/no-complica;ons dichotomy 
used in many risk adjustment models. The implica;ons for pricing follow a similar reasoning. 

The following hospitaliza;on decision tree example demonstrates how entropy can systema;cally 
iden;fy the most predic;ve factors for inpa;ent admission decisions. While this example uses simplified 
disease categories and severi;es, in prac;ce, such trees could incorporate more granular clinical 
indicators like vital signs, lab values, and func;onal status measures to create evidence-based protocols 
for medical necessity determina;on. 
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Suppose we have the following dataset: 

Disease Severity Hospitaliza;on? 

Disease B Low No 

Disease B Low No 

Disease A Low Yes 

Disease C Medium Yes 

Disease C High Yes 

Disease C High No 

Disease A High Yes 

Disease B Medium No 

Disease B High Yes 

Disease C Medium Yes 

 

1. We calculate entropy for the en;re dataset. 

H(Hospitaliza;on?) = -(P(Yes)log2P(Yes) + P(No)log2P(No)) = 0.97 

2. We calculate the informa;on gain for both features to determine which one provides a beOer 
split. 

a. Feature 1 (Disease: A, B, C) 
i. H(A) = 0 

ii. H(B) = 0.811 
iii. H(C) = 0.811 

b. Feature 2 (Severity: Low, Medium, High) 
i. H(Low) = 0.91827 

ii. H(Medium) = 0.918 
iii. H(High) = 0.811 

Informa;on Gain = H(Hospitaliza;on) – 𝛴 -.#/0123!4#560!∈846.0
92:46!4#560!

𝑥𝐻(𝐹𝑎𝑐𝑡𝑜𝑟) 

IG(Disease) = 0.970 – (2/10 * 0 + 4/10 * 0.811 + 4/10 * 0.811) = 0.322 

IG(Severity) = 0.096 

 

 

 

 

 

27 For the entropy values, we have -1*log2(1) = 0 and –((2/3)*log2(2/3) + (1/3)*log2(1/3)) = 0.918. 
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3. Since “Disease” has the higher informa;on gain, we choose it as the root node for the decision 
tree and split it along its values. 

a. Branch 1: Disease A – since the entropy is 0 (pure subset with all “Yes”), this leaf node 
predicts “Yes” for all diseases of this type. 

b. Branch 2: Disease B – since the entropy is not 0, we check if we gain addi;onal 
informa;on by spliNng up by Severity. 

i. H(Low | Disease B) = 0 – this leaf node predicts “No” for Disease B if the severity 
is low. 

ii. H(Medium | Disease B) = 0 – this leaf node predicts “No” for Disease B if the 
severity is medium. 

iii. H(High | Disease B) = 0 – this leaf node predicts “Yes” for Disease B if the 
severity is high. 

Calcula;ng the informa;on gain again, we see there is no further improvement to be made, since 
spliNng on “Severity” perfectly classifies the data in this branch. 

c. Branch 3: Disease C – since the entropy is not 0, we check if we gain addi;onal 
informa;on by spliNng up by Severity. 

i. H(Low | Disease C) = 0 
ii. H(Medium | Disease C) = 0 

iii. H(High | Disease C) = 1 

The IG from spliNng Disease C by Severity is 0.311. Since the IG is posi;ve, we should split Disease C by 
Severity. Since we cannot split the Disease C & High Severity category further without addi;onal factors, 
we might choose the majority class (or in case there is an even split like in this case), arbitrarily choose 
“Yes”.  

Final Decision Tree Structure 

• Root Node: Disease 
o Disease A: Predict "Yes" 
o Disease B: 

§ Severity 
§ Low: Predict "No" 
§ Medium: Predict "No" 
§ High: Predict "Yes" 

o Disease C: 
§ Severity 

§ Medium: Predict "Yes" 
§ High: Predict "Yes" (with note on uncertainty due to mixed class) 

 

This example illustrates how entropy helps in selec;ng the most informa;ve branch to split on when 
crea;ng classifica;on trees in a care management seNng. We can then inspect these trees for bias in an 
open and transparent way that we can’t when all the clinical decision making is given to an individual 
health care professional, with their own hidden biases. 
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Entropy Balancing Study 
In How do Private Equity Buyouts Affect Employee Pension Plans? Wensong Zhong uses entropy 
balancing to analyze the impact of private equity (PE) buyouts on the defined benefit plans of 
target firms from an Econometrics viewpoint.28 
 
A pension buyout is a financial arrangement where an employer with a defined benefit or pension 
plan makes a one-$me payment to an insurance company and transfers some or all the 
responsibility of paying out future pension benefits to the employees. It releases the employer 
from their pension liabili$es for those employees. 
  
The following is his abstract and paper referring to the third person instead of the first person. 

 
Using data from the Form 5500 filings, he finds that following a buyout, DB (Defined 
Benefit) plans are more likely to be frozen or terminated. Regarding the actuarial 
assump$on the pension characteris$cs, he finds an increase in the pension liability 
discount rate and decreases in the projected benefit obliga$ons, pension assets, and 
contribu$ons, but he did not find significant effects on funding ra$o. Addi$onally, he finds 
that investment strategies for these plans become riskier, with a higher alloca$on to 
equi$es and lower alloca$ons to cash, government securi$es, insurance accounts, and 
mutual funds. However, there is no significant effect on realized returns. These results 
suggest that private equity buyouts may nega$vely affect the re$rement incomes of plan 
par$cipants of target firms. 
 
For robustness check, he used entropy balancing to make PE-backed firms similar to the 
control firms in terms of the covariates. More specifically, he used the data of all covariates 
in year t − 1 which is one year before the buyout and generated the entropy balancing 
weight by each cohort. Then, he repeated the test with the entropy balancing weight. The 
results are generally consistent to the main results. This outcome suggests that his results 
are not driven by the selec$on bias. 

 
The entropy balancing method is based on J. Hainmueller’ paper “Entropy balancing for causal 
effects: A mul$variate reweigh$ng method to produce balanced samples in observa$onal 
studies.”29 
 
Entropy balancing is used on data where there is a binary division in the data. For example, in the 
pension plan buyout paper, the data contain pension plans that had a buyout and pension plans 
that did not have a buyout. Entropy balancing adjusts the data so that certain features of the two 
groups are the same. This adjustment is done to try and iden$fy the rela$onship of the binary 
characteris$cs to other characteris$cs that are in the data independent of already known 

 

28 “How Do Private Equity Buyouts Affect Employee Pension Plans?”; Zhong, Wensong; Dec. 19, 2024. 
29 Hainmueller J. Entropy Balancing for Causal Effects: A MulJvariate ReweighJng Method to Produce Balanced 
Samples in ObservaJonal Studies. Poli4cal Analysis. 2012;20(1):25-46. doi:10.1093/pan/mpr025 
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rela$onships. In the pension plan buyout paper, entropy balancing was used to examine the 
rela$onship between PE buyouts and the likelihood of DB plan termina$on or freeze. 

The following hypothe$cal example illustrates the concept of entropy balancing. Assume that 
there is an already known difference in the likelihood of a small pension plan or a large pension 
plan having a DB plan termina$on or freeze for mature companies.30 Also suppose that in the 
pension plan data, small pension plans are significantly more likely than large plans to have a plan 
termina$on and there are many more small plans then there are large plans. When looking at the 
data for pension plans that terminated, the data would mostly be for small pension plans and vice 
versa. Without entropy balancing, the difference in the rates of DB termina$on in the subsets of 
the data that had a buyout and those that did not have a buyout could mostly be due to there 
being more small pension plans that terminated and vice versa. Entropy balancing adjusts the 
data. The entropy balancing produces a set of data that has about the same propor$on of small 
pension plans in both the subset that had a buyout and the subset that did not. This may be done 
by applying different weights to the smaller plans than the larger plans. 

A\er the entropy balancing is done, the rates of DB termina$on in the subset of the entropy-
balanced data that had a buyout and the subset that did not, can then be compared to iden$fy 
the impact of the buyout independent of the size of the pension plan. For example, Zhong says 
that PE buyouts increase the likelihood of DB plan termina$on or freeze by 14.2 percentage 
points. Our interpreta$on is that if there were two comparable plans, and one had a PE Buyout 
and the other did not, the data shows that the plan with the buyout will have a 14.2 percentage 
point higher chance of DB plan termina$on or freeze. 

Life Table Entropy 
Leonard Hayflick in Longevity Determina-on and Aging31 states a thermodynamic type of 
viewpoint that “the aging of living things is not unlike the aging of everything in the universe 
including the universe itself. The molecular disorder that defines biological aging might occur 
passively by increasing decrements in the energy necessary to maintain molecular fidelity or 
ac$vely through, for example, the ac$on of reac$ve oxygen species (free radicals). Although 
biological aging occurs in an open system, the Second Law of Thermodynamics applies in that 
entropy increases despite the constant availability of energy in the form of food. Entropy 
increases in biological systems because natural selec$on has not favored systems that can 
maintain molecular fidelity indefinitely. Energy is be9er spent on strategies that ensure 
reproduc$ve success in order to perpetuate the species rather than spending it on post 
reproduc$ve longevity that has li9le species survival value.” 

To test Hayflick’s statement, we calculated the normalized entropy for the Life Table for the 
Projected Total Popula$on in the United States: 2020 Census. The entropy for the deferred 
distribu$on of death n|qx for decadal ages is provided below. The results show the pa9ern of 
increasing entropy as Hayflick described. The excep$on begins at age 80 for the males and 90 
for females. The decreases at those ages appear to be due to trunca$ng the table age 100 and 

 

30 Most private equity firms and funds invest in mature companies rather than startups to increase their worth or 
to extract value before exiJng the investment years later.  
31 “Longevity DeterminaJon and Aging”; Society of Actuaries; Sept. 25, 2001. 

https://www.soa.org/globalassets/assets/files/resources/essays-monographs/2002-living-to-100/mono-2002-m-li-02-1-hayflick.pdf
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accumula$ng all the deaths in age 100 for 100 and over, as illustrated in the following table 
below where the where the accumulated deaths are highlighted in yellow. 

As a comparison, we also calculated the normalized entropy for the mortality table in IRS No$ce 
2019-26 417(e)(3) 2020.32 It appears that the IRS mortality table has more certainty (order, bias, 
non-randomness), than the Life Table, which may be a result of using more refined mortality 
data from pension plan sponsors rather than general U.S. popula$on data. However, the 
premature peaking of the normalized entropy around age 60 seems to be contrary to the 
pa9ern of increasing entropy as Hayflick described. The calcula$on of entropy for the deferred 
distribu$on of death provides new insights. 

In a peer review of this paper, the sugges$on33 was made to adjust the IRS table for the 
significant differences between the Life Table for ages greater than 100. The IRS table has 
probabili$es of death to age 120, where the Life Table puts all deaths a\er age 100 into age 
100.  We pooled all the deaths a\er age 100 into age 100 for the IRS table. The entropy 
numbers at each age in the revised IRS table decreased when compared to the table below.  
However, the maximum entropy remained at age 60 as in the IRS table below. We concluded 
that it does not appear that decisions made in the IRS table on (a) gradua$on and (b) smoothing 
the rates for over age 95 to achieve a targeted 50% max at age 115 explains the decline in 
entropy at the older ages as observed within the IRS table. 

  

 Life Table for the 
Projected Total 
Population in the 
United States: 2020 

 IRS Notice 2019-26 
417(e)(3) 2020 

     
 Normalized Entropy  Normalized 

Entropy 
Age Male Female  Unisex 
  0 0.866022 0.8307002   
10 0.881290 0.8454024   
20 0.900687 0.8655545  0.81325011 
30 0.918786 0.8872633  0.82940574 
40 0.940104 0.9115660  0.84743485 
50 0.961831 0.9369014  0.86670623 
60 0.977194 0.9607660  0.88099269 
70 0.985273 0.9817410  0.87610506 
80 0.980782 0.9912299  0.83852813 
90 0.971539 0.9827134  0.74455053 

 

 

 

 

32 “Updated Mortality Improvement Rates and StaJc Mortality Tables for Defined Benefit Pension Plans for 2020”; 
Internal Revenue BulleJn 2019–26; June 24, 2019. 
33 SuggesJon from Timothy Geddes. 

https://www.irs.gov/pub/irs-drop/n-19-26.pdf
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Age Male Female 
Death 

probability 
(qx) 

Number 
of 

lives (lx) 

Number 
of deaths 

(dx) 

Life 
expectancy 

(ex) 

Death 
probability 

(qx) 

Number 
of 

lives 
(lx) 

Number 
of 

deaths 
(dx) 

Life 
expectancy 

(ex) 

90 0.14125 22,021 3,110 4.73 0.11537 33,929 3,914 5.34 
91 0.15417 18,911 2,915 4.43 0.12781 30,015 3,836 4.97 
92  0.16789 15,996 2,686 4.14 0.14125 26,179 3,698 4.62 
93 0.18240 13,310 2,428 3.88 0.15569 22,481 3,500 4.30 
94 0.19767 10,882 2,151 3.63 0.17113 18,981 3,248 4.00 
95  0.21366 8,731 1,865 3.40 0.18752 15,733 2,950 3.73 
96  0.23030 6,866 1,582 3.19 0.20484 12,783 2,619 3.47 
97 0.24754 5,284 1,308 3.00 0.22301 10,164 2,267 3.24 
98 0.26527 3,976 1,054 2.82 0.24194 7,897 1,910 3.02 
99 0.28343 2,922 829 2.66 0.26152 5,987 1,566 2.83 

100+ 1.00000 2,093 2,093 2.51 1.00000 4,421 4,421 2.65 
 
Conclusion 
Entropy is a concept that dates back to the pioneering days of communica$on where it was 
used to determine the minimal amount of informa$on (or entropy) necessary to code and 
decode a digital transmission. Shannon devised the methodology to improve the efficiency of 
digital communica$on by minimizing transmission traffic without compromising accuracy 
encoding human language and decoding the signals a\er transmission. The entropy of a 
message is the expected value of its informa$on content. Higher entropy means a greater level 
of uncertainty and lower interpretability of a given message. Lower entropy means more 
predictability in the message content and more accuracy in decoding it into understandable 
human language. It is this characteris$c of entropy, as a measure of order, disorder, uncertainty, 
and chaos that has led to its u$lity in the fields of thermodynamics, dynamical system theory, 
fractal geometry, biology, machine learning, economics and finance, among others.  

Entropy as a measure of uncertainty has been discussed in this paper using applica$ons in 
thermodynamics, sta$s$cs, por�olio analysis, machine learning, data rebalancing, and life 
expectancy analysis. The common observa$on in all these applica$ons is that entropy is a 
measure of disorder, which is related to bias and diversity. In fact, it has been demonstrated in 
this paper that bias is the opposite of diversity, and this is the first paper to define this 
rela$onship in terms of low and high entropy. When entropy is low, bias is high, and diversity is 
low. When entropy is high, bias is low, and diversity is high. Interpre$ng entropy in terms of bias 
and diversity provides a computa$onal method for examining data elements in large data sets. 
For example, it can be determined whether the distribu$on of levels on categorical variables are 
diverse enough to prevent bias in outcomes. The theore$cal maximum entropy, which is the 
natural logarithm of the number of levels, can be determined for a categorical variable against 
which the actual entropy on the variable can be compared for acceptability. If it is unacceptable, 
it could indicate that addi$onal sampling is necessary. On the other hand, a low entropy 
number may be desired if more homogeneous data is needed for an analysis. If the level of 
entropy is too high, then some observa$ons may need to be excluded from the modeling data 
to improve its homogeneity. These rela$onships were best observed in the decision tree 
example discussed above. 
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As the mi$ga$on of bias in data from all sources becomes increasingly important to insurers and 
regulators, entropy is likely to become a reliable metric to gain a be9er understanding of bias 
and diversity in data. While bias has already been defined in sta$s$cal terms, the term diversity 
has not. The analyses presented in this paper have given sta$s$cal meaning to the term 
diversity as the antonym to bias, and a tool to measure the balance of modeling data elements 
using the classical no$on of entropy da$ng back to the early days of digital communica$on. The 
old has become new again.  
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Appendix A—Coin Toss Example (n=2), Dice Example (n=6), Alphabet Example (n=4), and 
Con*nuous Probability Distribu*ons. 
This appendix provides further examples of the calcula$on of entropy for a coin toss example, 
dice example, alphabet example, and con$nuous probability distribu$ons. 

Coin toss example 

A simple example of entropy is tossing a fair coin. The coin has two possible outcomes, heads or tails, 
and that the probability of each is 0.5. To calculate the entropy, we take: 

Entropy = -Pr(Heads) * log2Pr(Heads) – Pr(Tails) * log2Pr(Tails) 

 = -0.5 * log2(0.5) – 0.5 * log2(0.5) 

 = -0.5 * (-1) - 0.5 * (-1) 

 = 0.5 + 0.5  

 = 1 

So, a fair coin toss has one bit of entropy. The coin toss generates one bit of informa;on. 

If we used a two-sided coin, say a two-headed coin, the entropy would be as follows: 

Entropy = -Pr(Heads) * log2Pr(Heads) – Pr(Tails) * log2Pr(Tails) 

 = -1 * log2(1)  

 = -1 * 0 

 = 0  

The entropy is zero because there is no informa;on to be gained by tossing the coin. 

We can calculate the entropy for intermediate degrees of “unfairness”. For example, if the coin had a 
70% probability of coming up heads and a 30% probability of coming up tails, we would get: 

Entropy = -Pr(Heads) * log2Pr(Heads) – Pr(Tails) * log2Pr(Tails) 

 = -0.7 * log2(0.7) – 0.3 * log2(0.3) 

 = -0.7 * (-0.51) – 0.3 * (-1.74) 

 = 0.36 + 0.52 

 = 0.88 

So, the entropy is a liOle less than one. We gain a liOle less informa;on from a coin toss when the coin is 
biased than from a tossing a fair coin. This is consistent with the no;on that maximum entropy is 
achieved when the distribu;on is uniform. 
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If we con;nue the calcula;ons for the biased coins, we get the following table: 

Pr(Heads) Entropy 

0% 0.00 

10% 0.47 

20% 0.72 

30% 0.88 

40% 0.97 

50% 1.00 

60% 0.97 

70% 0.88 

80% 0.72 

90% 0.47 

100% 0.00 
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Dice example 

A similar example of entropy would be tossing a fair die. Each number from one to six has a 1/6 
probability of being achieved. Thus, the entropy of one toss can be calculated as: 

Entropy = -Pr(1) * log2Pr(1) – Pr(2) * log2Pr(2) – Pr(3) * log2Pr(3) – Pr(4) * log2Pr(4) – Pr(5) * 
log2Pr(5) – Pr(6) * log2Pr(6) 

 = 6 * -(1/6) * log2(1/6)) 

 = 6 * -(1/6) * (-2.58) 

 = 2.58 

So, the entropy from tossing a fair die is 2.58, which is greater than the entropy from tossing a fair coin. 
This is because the die has six possible results rather than just two, so the toss of a die produces more 
than one bit of informa;on. 

Note that if the dice had four sides, the entropy would be two (see the alphabet example below). If the 
dice had eight sides, the entropy would be three. In this case, with six sides, the entropy is between that 
of a four-sided die and that of an eight-sided die. 

If the die was weighted, then the entropy would be less than 2.58. Let’s say the die was weighted so that 
there was a 95% probability of rolling a six, and a 1% probability of rolling each of the other numbers. 
Then the entropy would be calculated as: 

Entropy = 5 * -(.01) * log2(.01) – (.95) * log2(.95) 

 = 5 * -(.01) * (-6.64) – (.95) * (-0.07) 

 = 0.33 + .07 

 = 0.40 

So, this rather extreme weigh;ng generates much less entropy than a fair die, but since numbers other 
than six are s;ll possible the entropy is greater than zero. 

As another example of a weighted die, let’s say the die was weighted so that there was a 50% probability 
of rolling a one and a 50% probability of rolling a six, but no chance of any other numbers coming up. In 
that case the entropy would be iden;cal to that of a fair coin, since there are two possible results, each 
with an equal probability: 

Entropy = -Pr(1) * log2Pr(1) – Pr(6) * log2Pr(6) 

 = -0.5 * log2(0.5) – 0.5 * log2(0.5) 

 = -0.5 * (-1) - 0.5 * (-1) 

 = 0.5 + 0.5  

 = 1 
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Alphabet example 

Let’s assume we have a four-leOer alphabet. The only four leOers are A, B, C and D. Assume that each 
leOer has an equal probability of being used in any given word. The entropy of this alphabet is: 

Entropy = -Pr(A) * log2Pr(A) – Pr(B) * log2Pr(B) – Pr(C) * log2Pr(C) – Pr(D) * log2Pr(D) 

 = -0.25 * log2(0.25) – 0.25 * log2(0.25) – 0.25 * log2(0.25) – 0.25 * log2(0.25) 

 = -0.25 * (-2) - 0.25 * (-2) - 0.25 * (-2) - 0.25 * (-2) 

 = 0.5 + 0.5 + 0.5 + 0.5 

 = 2 

The entropy of two can be interpreted as saying that we require two bits of informa;on to reflect any 
leOer of the alphabet. We cannot reduce the number of bits used beyond something like: 

A = 00, B =01, C = 10, D = 11 

But let’s say that the probabili;es of each leOer being used were not equal. Let’s say the probability of 
an A is 60%, the probability of a B is 25%, the probability of a C is 10% and the probability of a D is 5%. 

Now the entropy is: 

Entropy = -Pr(A) * log2Pr(A) – Pr(B) * log2Pr(B) – Pr(C) * log2Pr(C) – Pr(D) * log2Pr(D) 

 = -0.6 * log2(0.6) – 0.25 * log2(0.25) – 0.1 * log2(0.1) – 0.05 * log2(0.05) 

 = -0.6 * (-0.74) - 0.25 * (-2) - 0.1 * (-3.32) - 0.05 * (-4.32) 

 = 0.44 + 0.5 + 0.33 + 0.22 

 = 1.49 

In this case the entropy is less than two, and so we may be able to represent the alphabet in bits more 
efficiently. For example, let’s assign: 

A = 0, B = 10, C = 110, D = 111 

Because the leOer A is used more oIen and is only assigned one bit, this representa;on is more efficient 
than simply assigning two bits to each leOer. Under this mapping, the average number of bits used for 
each leOer is equal to: 

60% * 1 + 25% * 2 + 10% * 3 + 5% * 3 = 1.55 bits. 

 

Con;nuous probability distribu;ons 

Uniform distribu.on 

Entropy can also be calculated for con;nuous probability distribu;ons. This is oIen referred to as 
differen;al entropy, because it measures the entropy in comparison to that of a con;nuous uniform 
distribu;on on [0,1], which has entropy of zero. A distribu;on that has lower entropy than a uniform 
distribu;on on [0,1] will have nega;ve differen;al entropy. 
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For example, let’s take a uniform distribu;on over the interval [0,b]. To simplify the integra;on, we will 
first calculate the entropy using the natural logarithm, which will produce the entropy in units of nats, 
and then convert to bits. 

The entropy of this uniform distribu;on (in nats) is equal to: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −e 𝑝(𝑥)𝑙𝑛E𝑝(𝑥)G𝑑𝑥
/

;
 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −e
1
𝑏
𝑙𝑛	 f

1
𝑏g
𝑑𝑥

/

;
 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −𝑙𝑛	 f
1
𝑏g

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑙𝑛	(𝑏) 

 
To convert the units of entropy to bits, we just have to divide by ln(2), so we get the entropy in bits for a 
uniform distribu;on as: 

Entropy = ln (b) / ln(2) 

 

We can see that entropy increases as b increases. 

Note that if b=2, the entropy is equal to one bit, consistent with the fair coin toss example. If b=4, the 
entropy is two bits, consistent with the alphabet example where four leOers were equally likely. 

 

Normal Distribu.on 

We can also calculate the entropy for a normal distribu;on. Again, we will simplify the calcula;on by 
calcula;ng the entropy in units of nats by using the natural logarithm and then convert the units to bits. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −e 𝑝(𝑥)𝑙𝑛E𝑝(𝑥)G𝑑𝑥
/

;
 

So, the entropy is equal to the nega;ve expected value of the log of a normally distributed variable 
N(μ,σ2): 

Entropy = -E[ln((2 𝜋   σ2)-0,5 * exp(-(x - μ)2 / 2 σ2))] 

 = - ln(2 𝜋   σ2)-0,5 *E[(-(x - μ)2 / 2 σ2)] 

  = 0.5 * ln(2 𝜋   σ2) + σ2 / 2 σ2 

  = ln(2 𝜋   σ2) / 2 + ½ 

Since ½ = ln (e(1/2)), we get the entropy in nats as: 

Entropy = ln(2 e 𝜋 σ2) / 2  

Conver;ng to bits, we get the entropy as: 

Entropy = ln(2 e 𝜋   σ2) / 2 ln 2 = log2(2 e 𝜋  σ2) / 2  
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We can see that entropy increases as σ2 increases. 

Now we can compare the entropy of a uniform distribu;on with variance equal to 1 with the entropy of 
a normal distribu;on with variance equal to one. 

The entropy of a normal distribu;on with variance equal to 1 is: 

ln(2 e 𝜋 σ2) / 2 ln 2 = ln(2 e 𝜋) /2 ln 2 = ln (17.08) / 2ln2 = 2.84/1.39 = 2.05 bits 

A uniform distribu;on with variance equal to one would have b = 120.5 = 3.464 

The entropy of a uniform distribu;on with b=3.464 is: 

ln(3.464) / ln 2 = 1.24/0.69 = 1.79 bits 

Although the variances are equal, the normal distribu;on has greater entropy than the uniform 
distribu;on. This is because the uniform distribu;on is restricted to the range [0, 3.464], while the 
normal distribu;on can take on any real number, giving the normal distribu;on more opportunity for a 
“surprise”. But among all distribu;ons restricted to the same range, the uniform distribu;on would have 
the greatest entropy. 
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Appendix B: Stock Return Entropy Calcula*ons 

Difference Tables for m = 1 

 

 

Difference Tables & Natural Log of Correla$on Integrals for m = 2 

 

𝜙*(0.97%) = −1.52 

 

Difference Tables & Natural Log of Correla$on Integrals for m = 3 

 

𝜙+(0.97%) = −1.91 
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