Academy C-2 Mortality Work Group Update Chris Trost, MAAA, FSA Chairperson, C-2 Work Group American Academy of Actuaries #### Agenda - Methods and assumptions - Follow-up from June update - Directional change in individual life C-2 mortality factors - Next steps #### C-2 Mortality Overall Approach - C-2 requirement covers mortality risk at the 95th percentile and is net of risk covered in statutory reserves - C-2 requirement includes mortality risks related to: - Volatility Risk natural statistical deviations in experienced mortality - Level Risk error in base mortality assumption - Trend Risk adverse mortality trend - Catastrophe Risk large temporary mortality increase from a severe event - Evaluate mortality risks using Monte Carlo simulation - Express capital requirement using a factor-based approach (e.g., factor applied to NAR) #### Current C-2 Life Mortality Risk-Based Capital | | Pre-Tax RBC Factors* | | |-------------------|----------------------|-------| | Per \$1000 of NAR | Individual | Group | | First \$500M | 2.23 | 1.75 | | Next \$4.5B | 1.46 | 1.16 | | Next \$20B | 1.17 | 0.87 | | >\$25B | 0.87 | 0.78 | ^{*}Reflects updates due to tax reform #### Method and Assumption Comparison | Item | Current | Updated - Preliminary | |---------------------------|---|--| | General Method | Monte-Carlo Model—PV of Mortality Losses | Monte-Carlo Model—PV of Mortality Losses | | Capital
Quantification | 95 th [PV(Scenario Actual) − 105%*PV(Scenario Expected)] ■ 105% represents assumed margin (approx. one standard deviation) available to offset losses in excess of expected | Evaluating multiple methods including: ■ Same as described in "Current" ■ PV(95 th) – PV(84 th) | | Projection Period | 5 years (3 years for Group) Assumed exposure past 5 years could be offset through management actions (raise premium, etc.) | 5 years (3 years for Group)Will consider other periods as well | | Discount rate | 6% after tax | 5% pretax (3.95% after tax) | | Base Mortality | 88% of 1975–1980 Male Basic Table 15Y Select & Ultimate Structure Male/Female not explicitly modelled Underwriting adjustments applied based on generation | 2017 Unloaded CSO 25Y Select & Ultimate structure Gender distinct—Male/Female 5 underwriting classes (3 nonsmoker/2 smoker) | | Base Improvement | Unknown source ■ 1.00% | 2017 Improvement Scale for AG-38 ■ Varies by gender and age | #### Directional Impact on Individual Life C-2 Factors | Risk
Component | Impact on current factors | |-------------------|---------------------------| | Volatility | | | Level | | | Trend | | | Catastrophe | | | Overall | Possible decrease | Assumes 5-year projection period #### Risk Component Comparison | Risk
Component | Key
Updates | Estimated Directional Impact on the C-2 Factor | |-------------------|--|--| | Volatility | Lower base mortality rates | Decrease 5-10% | | Level | Exclusion of AIDS scenarios
based on early '90s estimates | Decrease 20-30% | #### Risk Component Comparison | Risk
Component | Key
Updates | Estimated Directional Impact the C-2 factor | |-------------------|--|---| | Trend | Greater range of mortality
trends and possible differences
by age/sex cohort | Increase 5-15% | | Catastrophe | Similar pandemic severity Addition of 9/11-type terrorism event | Increase 0-5% | ## Summary of Current Developments - Preliminary analysis suggests a possible decrease in C-2 requirement, however more analysis needed - Biggest reductions are due to exclusion of AIDS scenarios at early '90s estimates and improvement in mortality levels compared to what was expected in the original C-2 factors - Some increase in trend and catastrophe components ### **Next Steps** - Additional analysis - Appropriate projection period - Differences between products - Size breakpoints; exposure base - Analysis of industry data; implication of "high" vs. "low" mortality company - Group Life - Preliminary factor development completion targeted for 2020 - Provide LRBCWG call update in Q1/Q2 AMERICAN ACADEMY of ACTUARIES # Questions? #### Additional Questions, contact: Chris Trost, MAAA, FSA Chairperson, C-2 Work Group Ian Trepanier Life Policy Analyst American Academy of Actuaries trepanier@actuary.org # **Appendix** #### Risk Distribution Approach Comparison | Risk | Original Work | Current Review- Preliminary | |-------------|---|---| | Volatility | Binomial(Policies, q) | Binomial(Policies, q) | | Level | Implicit from Discrete Scenarios: 7 Competitive Pressures scenarios – risk of overoptimistic pricing assumptions 15 AIDS scenarios – early '90s estimates of the impact of AIDS on insured mortality 4 Adverse Lapse Scenarios | LR~N(0, σ_{Lev}); $\sigma_{Lev} = \sqrt{\sigma_{Stat \ Samp.}^2 + \sigma_{Natural}^2}$ Two independent components: Statistical sampling/credibility volatility ($\sigma_{Stat \ Samp.}$) Natural mortality volatility ($\sigma_{Natural}$) Continuous normal distribution | | Trend | Discrete Distribution7 scenarios adjust mortality improvement assumption | [D₁, D₂,, D₆] ~ N(μ, Σ) 6 gender/age group improvement deviation variables (Dₙ) Correlated normally distributed random variables | | Catastrophe | Discrete Distribution Pandemic | 2 Discrete Distributions Pandemic – calibrated from multiple sources Terrorism – 5% probability of additional 0.05 / 1K |