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A Guide to the Use of Stochastic Models in 
Analyzing Social Security

Social Security’s long-term financial problems, and the various proposals to correct these problems, have aroused intense interest 
throughout the United States.  One consequence is that the process for measuring Social Security’s financial condition has come under 
detailed public scrutiny.

Each year, the trustees of the Social Security trust funds report on the financial condition of the system.  The principal results from 
the trustees’ report are generated by a deterministic model of the annual income and expenses of the system over a 75-year projection 
period.  The report also includes, in Appendix D, a sensitivity analysis, which describes how the results from the deterministic model 
would change if individual assumptions were changed in specified ways.  Since 2003, the report has also included, in Appendix E, the 
results from a stochastic model of the system.  The stochastic model differs from the deterministic model in that the inputs to the model 
are not fixed, instead taking on many values based on the probability those values will occur.  These appendices add considerably to the 
analysis of future prospects for continuing solvency of the Social Security program.

This guide provides an overview of what deterministic modeling, sensitivity analysis, and stochastic modeling mean, and 
how these methods are applied to the problem of evaluating the financial status of Social Security.  It also discusses some of the 
benefits of sensitivity analysis and stochastic modeling, as well as some of their limitations.  In addition, for those wish-
ing to see an example of how stochastic modeling works in practice, an Appendix describes a simulation of the invest-
ment returns from a savings or 401(k) plan, together with some of the inferences that might be drawn from such an analysis. 

Approaches to Modeling Social Security:   
Deterministic Modeling, Sensitivity Analysis, and Stochastic Modeling 

The Social Security System is very complex, and it should come as no surprise that mathematical models of the 
system are also very complex.  This complexity, however, need not pose an impenetrable barrier to understanding the 
basic concepts of mathematic modeling as they apply to Social Security.



2          ISSUE BRIEF OCTOBER 2005

Independent and Dependent Variables
Mathematic models include variables, which are intended to represent measurable values of real world 

phenomena and relationships among the variables.  For example, a mathematic model of a car trip might 
include three variables, the speed of the car and the time and distance traveled.  These variables are related 
by the mathematical expression: distance equals speed multiplied by time.  The speed and time can be set to 
any values within the physical constraints of the car — its maximum speed and the capacity of its fuel tank, 
for example, are called independent variables.  The distance traveled, which depends on the speed and time, 
is called a dependent variable.

This model is obviously simplistic in that it can only describe a car traveling at constant speed.  We could 
make the model more realistic by adding periods of acceleration and deceleration.  Each acceleration and de-
celeration would add new independent variables and new mathematical relationships.  In addition, we might 
add new dependent variables, such as the distance traveled during various segments of the trip.  These are 
called intermediate results, and the total distance traveled is the final result.

Deterministic Modeling
In deterministic modeling, all inputs to the model — the independent variables — are assigned definite 

values for each period of time between the beginning and the end of the projection period.  Actuaries usually 
call these values the assumptions.  Further, the relationships among the independent variables and any values 
derived in the course of running the model — the dependent variables — are fixed in advance. The term 
deterministic is used to distinguish this type of modeling from stochastic (or probabilistic) modeling, in which 
some or all of the independent variables take values that are assigned based on the probabilities those values 
will be realized and in which the relationships between the independent and dependent variables may not be 
fixed in advance.  Stochastic modeling is described later in this issue brief.

The Social Security actuaries use a deterministic approach to obtain three estimates of Social Security’s 
long-term financial situation:  Alternative I, a low-cost or optimistic forecast; Alternative II, the intermediate 
or “best estimate” forecast, and Alternative III, a high-cost or pessimistic forecast.  

In order to project trust fund balances, three types of independent variables require assumptions:  demo-
graphic variables (e.g., mortality, fertility), economic variables (e.g., average earnings, GDP and future inter-
est rates), and program-specific variables (e.g., taxable payroll, insured population, and factors underlying 
automatic adjustments).  For more information on assumptions, see the Academy’s issue brief Assumptions 
Used to Project Social Security’s Financial Condition. 

Each of the three alternatives requires 75 years’ worth of assumptions for each of these variables.  For ex-
ample, for the mortality assumption in the 2005 valuation, the age-sex-adjusted death rate per 100,000 lives 
for the 65 and over age group in the intermediate assumption set starts at 5,266 in the year 2005 and declines 
to 3,153 by the year 2080.  In the low-cost set of assumptions the rate declines from 5,299 to 4,359 (implying 
shorter life expectancy), and in the high-cost set of assumptions the rate declines from 5,232 to 2,111 (imply-
ing longer life expectancy).  Each of the other key independent variables has three sets of assumptions for 
each year from 2005 through 2080.

Once all the assumptions are set, each of the three sets of assumptions is run through a mathematical 
model (programmed on a computer), incorporating relationships among the variables that simulate the be-
havior of the entire Social Security system over a 75-year time period.  The three estimates of the status of the 
trust fund are part of the output of the model.

These three estimates vary over a fairly wide range.  While the projected actuarial balance — cumulative 
income less expenses expressed as a percent of covered payroll — at the end of 75 years is −1.92 percent of 
covered payroll using the best-estimate assumptions, the range of variation is 5.34 percent, from a high under 
Alternative I of +0.38 percent to a low under Alternative III of −4.96 percent (See Table IV.B4).  The wide 
range of results raises some obvious questions — how reliable is the best-estimate result and what factors 
could cause the actual outcome to be closer to the low-cost or high-cost result?  The discussion in the next 
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section describes one way to obtain information on the relative importance of the various inputs to the final 
estimates.

Sensitivity Analysis – A Closer Look at Deterministic Modeling
As is evident from the discussion of deterministic modeling, an enormous number of inputs into the 

model are required to simulate the behavior of the Social Security system.  Not only is the number of variables 
large, but each variable requires 75 assumed values for each of the three estimates.  Deterministic modeling 
alone cannot tell us which of the input variables are the most important to the final result.  We cannot de-
termine whether, for example, a small change in the rate at which mortality improves has a greater or lesser 
effect on trust fund balances than a small change in the rate of price inflation.  Further, we cannot determine 
the degree to which a change in one direction for a given variable is offset by a change in the other direction 
for a different variable.  This shows the importance of trying to determine the sensitivity of the final results to 
specified changes to model inputs. 

Appendix D of the trustees’ report illustrates how sensitivity analysis can be used to better understand the 
long-range prospects of the trust fund.  The appendix uses the intermediate-cost projection as the baseline 
for the analysis, and shows how the actuarial balance changes when a single assumption is changed from its 
value under the intermediate-cost projection to its value under the low-cost or high-cost projection.  The 
assumptions studied in this way include the total fertility rate, death rates, net immigration, real-wage differ-
entials, the consumer price index, the real interest rate, disability incidence rates, and disability termination 
rates.  The three projections in the body of the report allow us to see how the results vary when we change all 
the assumptions at once to their low-cost or high-cost values; sensitivity analysis allows us to measure how 
sensitive the projection results are to each of these eight assumptions individually.

For example, if we set the ultimate total fertility rate at its low-cost value, the actuarial balance changes 
from –1.92 percent, its value under the intermediate-cost assumptions, to −1.64 percent; and if we set this 
assumption to its high-cost value, the actuarial balance changes to −2.22 percent (Table VI.D2). Similarly, if 
we change the rate at which the annual probability of death declines over the 75-year projection period to its 
low-cost value, the actuarial value changes to −1.33 percent; and if we change the rate to its high-cost value, 
the actuarial balance changes to −2.63 percent (Table VI.D2).  This illustrates that changing the mortality 
improvement assumption to its low-cost or high-cost value has a greater effect on the actuarial balance than 
changing the fertility assumption to its low-cost or high-cost value.  We can infer that mortality improvement 
has a greater effect than fertility in producing the total change in the actuarial balance from the intermediate 
to the low-cost or high-cost assumption set.

Although we will gain considerable insight into the sensitivity of the ending trust fund balance to changes 
in each of the underlying assumptions, as well as how the assumptions may interact, this approach does not 
provide any information about the probability that a given scenario will be realized.  Stochastic modeling can 
provide this additional insight.   

Stochastic Modeling
The user of a deterministic model generally runs the model for only a small number of scenarios. For ex-

ample, the Social Security actuaries run their model once for each of the three assumption sets and twice for 
each of the eight assumptions studied in the sensitivity analysis, 19 times in all for each report.  In contrast, 
the user of a stochastic model may run the model hundreds or thousands of times.

Of course, it would not be possible to compose by hand hundreds or thousands of assumption sets for a 
model as complex as that required for Social Security.  Instead, the model includes a routine to choose the 
assumption set each time the model is run from the universe of all possible assumption sets based on the 
probability the situation described by the assumption set will occur in the real world.  If the model has been 
properly designed and the probabilities of the assumptions correctly determined, the distribution of the re-
sults of the model after a large number of runs can provide important information about the probabilities 
that various end results will be realized.  Using the probabilities of the independent variables to determine the 
probabilities of the dependent variables is the essence of stochastic modeling.



4          ISSUE BRIEF OCTOBER 2005

An important step in developing any stochastic model is determining the range of reasonably possible 
values for each independent variable and assigning a probability to each value.  The result is called the prob-
ability distribution of the independent variable.  There are several ways to go about this.  One approach bases 
the probability distributions of the independent variables on empirical studies of the real-world phenomena 
they represent.  Under this approach, the value chosen for each year over the projection period is independent 
of the values chosen for the other years.  

Another approach, the one used by the Social Security actuaries in their stochastic projections, bases the 
value of an independent variable each year on the values in prior years, together with some random yearly 
fluctuation.  In the analysis by the Social Security actuaries, these relationships are defined in such a way that, 
in the absence of the random fluctuation, values for a given year would equal those under the intermediate set 
of assumptions.  These two approaches can be combined in various ways; for example, the yearly fluctuations 
in the second approach can be assigned values based on empirically determined probability distributions 
characteristic of the first approach.

To make this more concrete, consider the fertility rate.  In the first approach our analysis regarding the fer-
tility rate assumption might proceed as follows:  the total fertility rate has varied between 1940 and 2004 from 
a low of 1.74 (average children per woman) in 1976 to a high of 3.68 in 1957. Values over the last 15 years have 
been very close to 2.0, and the projected range from the high-cost assumption to the low-cost assumption is 
1.7 to 2.2.  So we might assume for the purposes of the stochastic model that fertility will be distributed like 
a bell-shaped curve ranging from 1.7 to 2.2 with its peak at 1.95, and assign values each year on that basis. 

The second approach described above would lead to the following type of formulation (oversimplified 
from what is in fact done by the Social Security actuaries):  this year’s fertility rate is equal to 10 percent of 
the fertility rate from 10 years ago, plus 20 percent of the fertility rate from 7 years ago, plus 30 percent of the 
fertility rate from 5 years ago, plus 40 percent of the fertility rate from 2 years ago, plus a random number 
between -0.05 and +0.05.

Two complicating factors in this process are correlation and covariance.  Although the independent variables 
can be chosen with a high degree of freedom, they may not be entirely independent of each other.  For example, 
productivity growth and GDP growth are strongly correlated in a positive manner, in the sense that they often 
move in the same direction — when productivity growth is high, GDP growth is usually high as well; and when 
productivity growth is low, GDP growth tends to be low.  Similarly, GDP growth and unemployment are some-
what negatively correlated — when unemployment rises, GDP growth may slow, and vice versa.  In this context, 
correlation refers to the tendency of two or more independent variables to move in the same (positive correla-
tion) or opposite (negative correlation) directions, and covariance refers to the strength of these relationships.  It 
is important to remember that correlation only measures a tendency and not a certainty.  For example, in recent 
years we have at times experienced productivity increases along with a decrease in the rate of GDP growth.

When two or more independent variables are correlated, the selection of a particular value for one will 
constrain to some extent the possibilities for what may be chosen for the second.  In other words, once we 
randomly choose a value for one independent variable, the probability distribution used to choose a value 
for any other independent variable that is correlated with the first must be adjusted to take into account the 
correlation.

Determining probability distributions, correlations, and covariances for the independent variables is the 
most difficult and crucial aspect of a correctly designed stochastic analysis.  It can be far more complicated 
than choosing assumptions for a deterministic model.  The value of a stochastic model depends on how well 
this process is carried out. 

As noted above, a stochastic model can be run hundreds or thousands of times.  Each run, or trial, entails 
choosing the values to be used for each independent variable, running the model, and saving the result.  Once 
the process is complete, the results of all the trials are tabulated and ordered so that statistical inferences can 
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be made.  If, for example, 10,000 trials of the Social Security model were run to the year 2030 and the ending 
trust fund balance was positive in 9,750 of these trials, we would interpret that result to mean that there is a 
97.5 percent probability of having a positive balance in the year 2030.  The example in the brief ’s appendix 
describes the entire process in more detail.

In the stochastic models discussed up to now, the relationships by which the dependent variables are de-
rived from the independent variables have been fixed, as they are in deterministic models.  In some situations, 
the exact relationships between the independent and dependent variables are not known in advance; only the 
general form of the model can be specified.  In these situations, regression analysis can be used to help define 
more completely the relationships among the independent and dependent variables in the model.  The tech-
niques of regression analysis allow the user to derive the best possible definition of these relationships from 
observed past values of the independent and dependent variables.  The newly specified relationships can then 
be used to refine the model for forecasting future values of the dependent variables.

Time series analysis is often used in situations where the value of a dependent variable in the current period 
is a function of its value in the prior period or periods.  A simple example of this would be the size of a pen-
sion fund balance, which will depend not only on market returns during the current period, but also on its 
balance at the end of the prior period.  It is often relatively easy to derive relationships among variables over 
short periods of time through empirical studies.  Time series analysis can be used to see how these short-term 
relationships develop over longer time periods.  Time series have the advantage that relatively little knowledge 
of the underlying causal relationships is needed to begin to draw conclusions.    

It is important to understand that deterministic and stochastic modeling are not mutually exclusive.  Few 
models of complex systems are entirely one or the other.  For example, when the annual Social Security cost-
of-living adjustment was deferred in years when the cost-of-living increase fell below a fixed threshold, the 
Social Security actuaries’ deterministic model used stochastic methods to calculate the cost effect.   Under the 
deterministic model there would have been no effect, because the fixed COLA assumption was higher than 
the threshold, so the adjustment would never be deferred.

An important potential use for stochastic modeling of the Social Security system is the analysis of various 
reform options debated in the U.S. Congress.  For example, in the case of recent proposals to partially priva-
tize Social Security through the use of individual investment accounts, stochastic modeling could be used to 
try to answer the following question:  Find an age “X” so that if a worker invests “w” percent of his wages into 
an individual investment account from age “X” to the normal retirement age, there is a 95 percent probability 
that at the worker’s normal retirement age, the worker will have combined benefits (from a redefined Social 
Security reduced benefit and from the annuity purchased from the individual investment account) at least as 
great as under current law.  Clearly, there are a plethora of other policy questions that could also be addressed 
by stochastic modeling.

Benefits and Limitations of Specific Approaches to Modeling Social Security 

Before listing some of the benefits and limitations of the specific approaches to modeling Social Security, 
it will be useful to make some general observations about models.  All models, from the simplest to the most 
complicated, involve varying degrees of abstraction, both explicit and implicit.  That is to say, no model is 
a perfect representation of its subject.  Models are more or less useful in direct proportion to the degree to 
which they capture the most significant dynamics of the program or phenomenon being studied.   

Deterministic Modeling

Benefits
• Relatively easy to understand and explain.
• Results can be independently duplicated and verified.
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Limitations
• Every assumption needs to be explicitly chosen before model is run.
• No insight into relative importance of the major assumptions.
• No assessment of the likelihood any particular scenario will actually occur.

Sensitivity Analysis

Benefits
• Provides insight into the relative importance of major assumptions.
• Can be used to analyze how assumptions interact.
• Well suited to dealing with specific “what if ” types of questions.
• Since all assumptions are still explicit, results can still be independently duplicated and verified.

Limitations
• No assessment of the likelihood any particular scenario will actually occur.
• Choice of additional scenarios is somewhat subjective.

Stochastic Modeling

Benefits
• Allows for an analysis that in principle can cover a very significant range of possible future outcomes.
• Permits assessments of the likelihood of results.
• Can uncover “unexpected” interplay among the independent variables. Unexpected is in quotes be-

cause, at some level, any result could be anticipated by detailed analysis. However, it might not be easy 
to determine the outcome of particular combinations of assumptions, and stochastic analyses involving 
large numbers of trials can help uncover unanticipated relationships.

• A stochastic model, though complicated, is much more flexible than the typical deterministic model.  
For example, the initial inadequacies of a model may be corrected over time. This is a significant con-
sideration when we ponder the rapid development of computing power. Techniques that are too com-
putationally complex to be implemented now might be easily executed within a few years.

• When the low, intermediate, and high deterministic assumptions are judiciously chosen, stochastic 
modeling can provide assurance that a large proportion (typically 95 percent) of possible outcomes 
falls within the range defined by the low and high assumptions. 

Limitations
• Model risk is a significant issue.  For each independent variable we allow to vary stochastically (i.e., 

which will be sampled from a probability distribution), we are assuming that the probability distribu-
tion used in the model correctly reflects the actual distribution for that variable and its correlations 
with the other independent variables.  The risk increases rapidly with the number of independent vari-
ables, because the correlation relationships among the independent variables proliferate as the number 
of variables increases.

• Even if correlation relationships are correctly characterized in the early years of the projection period, 
potential changes in these relationships over time are nearly impossible to predict accurately.

• By stressing technique rather than assumptions, complex stochastic modeling may distract us from 
where the true effort needs to be applied.  With all the uncertainty surrounding economic assumptions, 
stochastic models may provide us with a false sense of exactitude.

• Since the number of possible scenarios is infinite, and because randomness has explicitly been added 
to the assumptions, the results are difficult to replicate, although summary statistics should be fairly 
similar in two properly constructed simulations of sufficiently many trials. 
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Summary and Recommendations:

This brief has discussed several approaches to modeling Social Security:  deterministic modeling, sensitiv-
ity analysis, and stochastic modeling.  Each has its strengths and weaknesses.  

For example, deterministic models are the easiest to analyze and explain, but they provide no insight re-
garding the relative importance of the independent variables to the final result.  

Sensitivity analysis provides insight into how the final result can vary as independent variables are systemati-
cally changed but offers no convenient mechanism to assess the likelihood of the scenario being examined.  

Finally, stochastic modeling allows us to make probabilistic statements regarding the likelihood of various 
outcomes, but at the cost of a fairly elaborate mathematical and statistical infrastructure, and, even more 
importantly, with the additional risk of model misspecification.  

Sensitivity analysis will always be a useful “what if ” methodology in assessing the impact of a change in one 
or more underlying assumptions.  We believe stochastic modeling is useful in performing additional analysis, 
especially the type of analysis required to evaluate the likelihood of particular scenarios. 
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Appendix – Simulating a Savings Plan Account Balance

Any time that we talk about mathematical modeling, we are talking about taking some type of system 
whose behavior can be abstracted in a way that allows for meaningful analysis.  Let’s take the example of a 
thrift or 401(k) savings plan that currently has $1,000 in it, and assume we are interested in determining 
what the balance would be five years from now, assuming no additional contributions.

Before we proceed, it is important to note that this example is not intended to demonstrate how the ac-
tuaries in the Social Security Administration do their modeling.  Rather, it is intended to provide the reader 
with an example, simplified for illustrative purposes.

If we were modeling the balance in a purely deterministic way, we would be given (or we would assume) 
some annual rate of growth, say 6 percent.  We would then take the $1,000 and multiply it by 1.06 five times 
in order to obtain an answer of $1,338.23.

If we were interested in performing what is called sensitivity analysis, which is basically the methodol-
ogy being used when the term “scenario testing” is employed, we might want to determine what the five-
year ending balance would be if the growth rate were –2 percent or 12 percent (instead of the assumed 6 
percent).  In the first case we would calculate an ending balance of $903.92; in the second case it would be 
$1,762.34.

Now let’s take a look at what would be involved in performing a stochastic simulation of the five-year 
ending balance.  “Stochastic” is simply a synonym for “probabilistic.”  In stochastic simulations, we choose 
inputs into the model (in this case the rate of growth) according to some mechanical rules that reflect the 
probability of that input actually being observed.

To restate our problem, let’s suppose that we wanted to determine the range of ending account balances 
in a thrift savings plan five years from now, assuming that we start with $1,000 and that we have only one 
asset class (investment category or mutual fund) in which to invest.  We also assume further that the only 
possible annual returns are –4 percent, 0 percent, 4 percent, 8 percent, 12 percent and 16 percent, each 
equally likely.  We could then simulate each five-year period with five consecutive rolls of a standard die, 
with faces numbered 1 to 6.  We will interpret a 1 as indicating a –4 percent return, a 2 as a 0 percent return, 
a 3 as a 4 percent return, and so on.

We can begin the first simulation by rolling the die five times.  Suppose the rolls are 3, 5, 1, 1, and 4.  
Then, at the end of the first year, the $1,000 has grown by 4 percent, to $1,040.  During the second year, the 
fund grows by 12 percent, to $1,164.80.  During the third year the fund grows by –4 percent (or, what is the 
same, it loses 4 percent) to end the year at $1,118.21.  During the fourth year the fund loses 4 percent again, 
to end the year at $1,073.48.  Finally, during the fifth year, the fund grows by 8 percent to end the five-year 
period at $1,159.36.

We would then start the second simulation by rolling the die five more times, but this time we roll 1, 6, 
2, 5, and 1.  Working through what each roll means produces a five-year ending balance of $1,197.34.

We would then perform these simulations over and over again (perhaps using a spreadsheet or some 
other electronic aid), maybe a hundred or a thousand times.  After performing all these simulations, we 
would then have a range of ending values, from $815.37 (rolling five 1’s) to $2,100.34 (rolling five 6’s), with 
most values in the vicinity of $1,300 (this is because the way possible returns were set up implies an average 
return of 6 percent per year).

How would the results be interpreted?  Let’s suppose that 100 simulations were performed and that the 
results were distributed as follows:
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Ending 5 year balance Number of simulations

Less than or equal to $1,000.00 12

$1,000.01 - $1,200.00 18

$1,200.01 - $1,400.00 32

$1,400.01 - $1,600.00 15

$1,600.01 - $1,800.00 10

$1,800.01 - $2,000.00 9

Equal to or more than $2,000.01 4

Then, using these results, we could make the following assertions:

• There is a 12 percent chance of ending the five-year period with less than or no more than the starting 
balance of $1,000 (since in 12 simulations out of the 100 performed, the ending balance was less than 
or equal to $1,000).

• There is a 4 percent chance of the account doubling or better by the end of five years.

• The likeliest five-year ending balance is between $1,200 and $1,400.

It is important to keep in mind that if another set of 100 simulations were performed, the distribution 
of five-year ending balances would likely be slightly different.  Nonetheless, as more and more simulations 
were performed, the final results would tend to stabilize.

Often, simulations are performed in models where there is more than one independent variable affect-
ing the system.  For example, most people have their savings invested in more than one type of asset.  It is 
usually the case that the various returns on the different asset classes are not entirely independent of each 
other.  Because all asset classes represent available choices in the investment universe, the returns on some 
classes are influenced by the available returns on others.  This phenomenon is what is being described when 
the term “correlation” is being used — it indicates the tendency to move in a similar direction (positive 
correlation) or the opposite direction (negative correlation).

In order to acquire a feel for how correlation can enter into simulations, let’s suppose that we now have 
two asset classes in which our initial $1,000 account balance is invested, with $500 in each.  Suppose that 
the first asset class is the same as above and that the second is negatively correlated with the first.  In other 
words, if the first asset class does well, the second tends to do poorly, and vice-versa.  It is possible for both 
to do well or both to do poorly, although it is less likely.

The following table will show what we will be assuming for possible annual returns on the second asset 
class, given a return on the first:

If the return 
on the first 
asset class is:

The possible returns on the second will be:

-4% 2%, 4%, 6%, 8%, 10%, 12%

0% 0%, 2%, 4%, 6%, 8%, 10%

4% -2%, 0%, 2%, 4%, 6%, 8%

8% -4%, -2%, 0%, 2%, 4%, 6%

12% -6%, -4%, -2%, 0%, 2%, 4%

16% -8%, -6%, -4%, -2%, 0%, 2%
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In other words, we will be assuming that if the return during the year on the first asset class is 8 percent, 
then there is a 1/6 chance of a –4 percent return on the second asset class, a 1/6 chance of a –2 percent re-
turn, a 1/6 chance of a 0 percent return, and so on.

So now when we perform a simulation, we will need a pair of dice.  The first die (possibly of a different 
color than the second so we can tell them apart) will be interpreted as before.  The interpretation of the 
second die, however, will depend on the number showing on the first die.

For the first simulation, suppose that we first roll a 4 on the first die and a 2 on the second die to simu-
late the first year.  The 4 on the first die means that the $500 invested in the first asset class has grown by 8 
percent to $540, while the 2 on the second die indicates that, given an 8 percent return on asset class one, 
there has been a –2 percent return on the $500 invested in the second asset class, resulting in a drop in value 
to $490.  

For the second year suppose we roll a 1 on the first die and a 5 on the second die.  The $540 invested 
in asset class one will lose 4 percent and drop to $518.40, while asset class two will gain 10 percent and 
increase to $536.  For years three, four and five, suppose that the pairs of tosses are (3,3), (1,4) and (4,2).  
Using the information we have about returns of the two asset classes, we would be able to determine that at 
the end of the five-year period, the amount in asset class one will have grown to $558.98, while the amount 
in asset class two will have grown to $581.89, for a total ending account balance of $1,140.87.

As before, we will perform a second simulation by tossing the dice five more times and interpreting the 
results accordingly.  After performing simulations numerous times, a range of possible outcomes, together 
with a chart showing the distribution of results (similar to the one for the one asset class example) could be 
developed.  From this chart we would be able to infer regarding the likelihood of various outcomes.

Here are a few items to keep in mind.  First, it does not need to be the case that each of the returns we 
used in the previous examples had to have equal likelihood.  For example, suppose that a –4 percent return 
occurred 1/6 of the time, a 0 percent return occurred 1/3 of the time, a 4 percent return occurred 1/3 of 
the time and an 8 percent return occurred 1/6 of the time.  We would be able to simulate this situation by 
using a special die whose six faces were labeled 1, 2, 2, 3, 3, 4 and interpreting a 1 as a –4 percent return, a 
2 as a 0 percent return, a 3 as a 4 percent return and a 4 as an 8 percent return.

Second, all the possible returns don’t have to “fit” on a standard six-sided die.  If there are “N” possible 
outcomes, we will be able to simulate them by envisioning an N-sided die, appropriately marked. (Here is 
where it begins to be useful to have a spreadsheet or some other electronic aid.)

Furthermore, the number of possible outcomes can even be infinite, as they would be if our annual re-
turns were chosen randomly from an interval ranging from –4 percent to 16 percent.  The important thing 
to keep in mind is that what is needed is a way to sample (simulate) from the “sample space” (the range of 
possible “rolls” or random numbers) and a way to interpret, in the context of the system being modeled, 
the value which was chosen.
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