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The Academy
 The American Academy of Actuaries is a 19,500-member 

professional association whose mission is to serve the public 
and the U.S. actuarial profession. For more than 50 years, the 
Academy has assisted public policymakers on all levels by 
providing leadership, objective expertise, and actuarial advice 
on risk and financial security issues. The Academy also sets 
qualification, practice, and professionalism standards for 
actuaries in the United States.
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Seminar Host
 Roosevelt Mosley, MAAA, FCAS

 Chairperson, Academy’s Automobile Insurance Committee
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Today’s Agenda (Selective)
 Session 1 – Predictive Modeling “Cooking Show”
 Session 2 – Generalized Linear Models (GLMs)

 Deep Dive Into GLMs
 Going Beyond GLMs

 Session 3 – Practical Examples of Predictive Models
 Session 4 – Public Policy Discussion
*Note – only slides from Session 2 are available.



© 2019 American Academy of Actuaries. All rights reserved.
May not be reproduced without express permission.

GENERALIZED LINEAR 
MODELS:
A DEEP DIVE FOR INSURANCE 
APPLICATIONS

Predictive Modeling – Session 2A
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Introductions
 Nathan Hubbell, FCAS

 2VP, Business Insurance R&D
 Travelers

 Jeff Kinsey, MAAA, FCAS
 P&C Actuarial Director, Research Unit
 State Farm 
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Agenda
 Generalized Linear Models vs. Traditional Linear 

Models
 Model Building Process Key Steps
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Credits

 Anderson, et al.  A Practitioner’s Guide to 
Generalized Linear Models

 Goldburd, et al.  Generalized Linear Models for 
Insurance Rating
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Linear Models

 Formulas
𝑌𝑌𝑖𝑖 = 𝐸𝐸 𝑌𝑌𝑖𝑖 + 𝜀𝜀𝑖𝑖

The actual value equals the expected value plus a residual

𝐸𝐸 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖𝑖 + 𝛽𝛽2𝑋𝑋𝑖𝑖𝑖 + ⋯
The expected value equals a combination of relevant factors
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Linear Models
 Assumptions

 Random Component: Each component of Y is independent and is normally
distributed. The mean of each component is allowed to differ, but they all have 
common variance.

 Systematic Component: The covariates are combined to give the linear 
predictor.

 Link Function: The relationship between the random and systematic 
components is specified via a link function. For a linear model, the link 
function is the identity function.
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Linear Models
 Limitations in Practice

 Normality and constant variance are often not 
applicable for insurance applications

 Normality assumptions means both positive and 
negative values are possible

 Additive effects are not common
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Generalized Linear Models

 Formulas
𝑌𝑌𝑖𝑖 = 𝐸𝐸 𝑌𝑌𝑖𝑖 + 𝜀𝜀𝑖𝑖

The actual value equals the expected value plus a residual

𝐸𝐸 𝑌𝑌𝑖𝑖 = 𝑔𝑔−1(𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖𝑖 + 𝛽𝛽2𝑋𝑋𝑖𝑖𝑖 + ⋯)
The expected value equals a function of the combination of relevant 

factors
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Generalized Linear Models
 Assumptions

 Random Component: Each component of Y is independent and is from one of 
the exponential family of distributions

 Systematic Component: The covariates are combined to give the linear 
predictor

 Link Function: The relationship between the random and systematic 
components are specified via a link function that is differentiable and 
monotonic
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Generalized Linear Models
 Exponential Family of Distribution

Distribution Variance Common Uses

Normal Constant --

Poisson Varies with mean Claim Frequency

Gamma Varies with mean squared Claim Severity

Tweedie “Combo” of Poisson and Gamma Loss Ratio
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Generalized Linear Models
 Link Functions

 Log link function is commonly used for insurance 
applications

 Allows the covariate effects to be multiplicative rather 
than additive

𝐸𝐸 𝑌𝑌𝑖𝑖 = 𝑒𝑒(𝛽𝛽1𝑋𝑋𝑖𝑖1+𝛽𝛽2𝑋𝑋𝑖𝑖𝑖+⋯ ) = 𝑒𝑒𝛽𝛽1𝑋𝑋𝑖𝑖𝑖 ∗ (𝑒𝑒𝛽𝛽2𝑋𝑋𝑖𝑖𝑖)
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Generalized Linear Models
 Other Link Functions in Practice

 Logit – used for binary target 
 Survival on Titanic, Customer Lapse

 Identity – keeps “traditional” additive effects
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Model Building Process

Project Scope

Collect Data

Explore Data

Model 
Building

Model 
Selection

Model 
Deployment

Model 
Monitoring
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Model Building Process

Project Scope

Collect Data

Explore Data

Model Building

Model Selection

Model Deployment

Model Monitoring

 Somewhere between Collecting and 
Exploring…
 Split data for specific purposes
 One set to build models
 Another to assess models

 May elect to create three splits
 Cross validation
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Model Building Process

Project Scope

Collect Data

Explore Data

Model Building

Model Selection

Model Deployment

Model Monitoring

 Model Selection
 Performance of model compared to 

current or other challenger models
 Perform well on all segments of 

business?
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Model Building Process

Project Scope

Collect Data

Explore Data

Model Building

Model Selection

Model Deployment

Model Monitoring

 Model Deployment
 How will the model be used?
 Segmentation of business in “tiering” 

plan?
 Inform “traditional” rating plan factors?
Move all the way to indicated? Weight with 

current rate plan?
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Model Building Process

Project Scope

Collect Data

Explore Data

Model Building

Model Selection

Model Deployment

Model Monitoring

 Model monitoring 
 Ensures model continues to perform as 

expected
 Changes in variables? Changes in 

performance?
 Over time? Compared to model build?
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Model Building Process

Project Scope

Collect Data

Explore Data

Model Building

Model Selection

Model Deployment

Model Monitoring

 Other Considerations
 Model validation conducted?
 Experience/credentials of modelers
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Questions?
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BEYOND GLMS

Predictive Modeling – Session 2B
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Presenters
 Mark Jones, MAAA, ACAS

 PWC

 Mike Woods, FCAS, CSPA
 Allstate
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Machine Learning/Artificial Intelligence Overview

Advantages

 Higher-capacity models can represent more 
complex data generating processes possibly 
achieving greater accuracy cost-effectively

 Flexible architecture capable of consuming a 
broad range of data sources

 Large range of functional application suitable 
for the varied needs of insurers

Disadvantages

 Opaqueness of many model types incompatible 
with a business need for “reasons”

 Many architectures require large amounts of data
for sufficient training and validation

 Can require a much higher degree of knowledge
in numerical analysis, programming and 
hardware to skillfully apply

 Higher-capacity models overfit easier
 Requires significant resources to tune the 

performance
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A General ML/AI Framework

Typical tasks T

Depends on the purpose and determines how 
observations are processed

 Synthesis or Sampling
 Imputation
 De-noising
 Density Estimation
 Classification
 Regression
 Transcription or Translation
 Structured Output
 Anomaly Detection

“A computer program is said to learn from 
experience E with respect to some class of 
tasks T and performance measure P, if its 
performance at tasks in T, as measured by 
P, improves with experience E.” — T.M. 
Mitchell

P depends on T
Accuracy        Error       LogLoss MSE

E is continually generated by the process
Unsupervised p(x) Supervised p(y|x)
Semi-supervised p(.) Reinforcement p(x(t))
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Model Generalization

For a good model 

Training error etrain is small

Gap between train and test error 
etrain - etest is small

1

2

Generalization

Distinguishes machine learning from 
optimization

Generalization error is the expected value of 
error over the range of possible inputs the 
machine will encounter

The inputs are assumed to be generated from a 
data generating process and iid according to a 
common data-generating distribution

For a randomly selected model:

E[etrain] = E[etest]
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Model Capacity

capacity 
the ability to fit a wider range of functions

how complex a relationship it can 
model

a model with higher capacity has the 
ability to model more relationships 
between more variables than a 
model with a lower capacity
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Capacity and Generalization

how complex a relationship it can 
model

 Underfitting occurs when model is not able to obtain as low an error 
value as is possible on the training set while maintaining 
generalizability

 Overfitting is the analogous situation where the model fits to noise 
present in the data and not the underlying data generating process

There is greater risk when a model’s capacity greatly exceeds the 
complexity of the task.

Considered best practice by many that the first model built should 
always be designed to overfit.

Best to understand the boundaries of the model sooner rather than 
later.

The more a model has 

capacity

the more opportunity it has 
to

overfit
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Modifying Capacity Through Regularization

how complex a relationship it can 
model

• Regularization discourages learning a more 
complex or flexible model, so as to avoid the risk 
of overfitting

• This can be achieved by adding a penalty term in 
the loss function that adds cost for increased 
complexity

• Modification made to the learning algorithm to 
reduce generalization error but not training error

• There are other ways to regularize:
- Dropout
- Bagging
- Early stopping

L1 Regularization penalizes 
based on the absolute value of 
the parameters. Penalty may 
force some parameters to zero 
and so can be used for feature 
selection.
L2 Regularization penalizes 
based on the square value of 
the parameter. The penalty 
forces all parameters to be 
non-zero and so forces all 
information to be retained.
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Modifying Capacity Through Hyperparameters

how complex a relationship it can 
model

• Hyperparameters are the parameters of the model that are set prior to 
learning

• They are not optimized as part of the training process because they 
would overfit every single time

• Generally, hyperparameters affect capacity

Hidden layers

Number of trees

Learning rate

Tweedie power

Min observations 
per node

Sampling rate

Folds

Tree depth
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Modifying Capacity Through Hyperparameters

how complex a relationship it can 
modelb1b2

Lo
ss

Hyperparameter Tuning

• Hyperparameters define a n-dimensional loss surface 
that may not be well-behaved

• Selecting the optimal set of hyperparameters is not 
a trivial task

• The final selection may have a significant impact on 
the model’s performance and generalization error

Common approaches
Grid searching
Random searching
Bayesian optimization
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Grid and Random Searching

how complex a relationship it can 
model

1. Define a n-dimensional grid with potential combinations of hyperparameters H ⊆ Rn 

2. Fit model and test performance on elements in H
a. Exhaustive: Use all combination in H
b. Random: Use some random subset H1 of H

3. Refine the grid H1 ⊆ H based on the regions of minimum loss / best performance
4. Repeat until the desired level of loss / performance is reached

a. Consider other stopping criteria

Resource- and time-consuming
May require a more simplified version of the model to be fit for each 
combination of hyperparameters
Does not guarantee the global minimum
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Bayesian Hyperparameter Estimation

how complex a relationship it can 
model

• Evaluations of the loss function (minimized in 
training) is resource-intensive — minimize 
the number of calls to this function

• Grid & random searching is uninformed by 
past evaluations

• BHE can be used to leverage historical calls to 
the loss function to make more informed 
decisions on future hyperparameters to test

May produce better test set performance, in fewer iterations than a grid or random search
Relatively simple to understand but may be difficult to communicate
Relies on a selection of a prior “surrogate” for the loss function

• Define a “surrogate” probability distribution of the 
loss function given the hyperparameters

• Find the parameters that maximize the expected 
improvement in the loss function

• Evaluate the loss function for the selected 
parameters

• Update the surrogate with the new information
• Repeat  2 - 4 until stopping criteria met
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Weak Learners and Strong Classifiers

how complex a relationship it can 
model
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Bagging – Bootstrap Algorithm

how complex a relationship it can 
model

Algorithm

1. Create bootstrap resample of data
2. Fit model on each resample
3. Scoring:

- Classification: Majority vote
- Regression: Mean/Median score

Advantages

 Produces more stable predictions – i.e. 
reduces variance

 Less likely to overfit data

Disadvantages
 Generates a “black box”
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Random Forests – Bagging Decision Trees

how complex a relationship it can 
model

 Introduced by Leo Breiman (2001)
 Uses bagging to improve decision trees
 De-correlates trees by sampling

- Data with replacement
- Columns/features at each node

 Produces out-of-bag error rates
 Produces variable importance measure
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Random Forests – Parameters

how complex a relationship it can 
model

Tree 
Parameters Impact and Considerations

Number of 
features to 
select at each 
node

• Prevent overfitting
• Produce more diverse trees & 

discover hidden relationships

Maximum 
depth

• Deeper trees allow for more 
complex interactions

• Deeper trees allow for less 
biased predictions

• Shallower trees result in a lower 
propensity to overfit

Minimum 
observations 
per node

• Fewer observations per node 
increase node purity

• More observations per node 
reduces propensity to overfit

Bagging 
Parameters Impact and Considerations

Number of 
trees

• More trees result in a lower 
prediction variance

• More trees may increase the 
propensity to overfit

• Stopping criteria may limit the 
actual number of trees fit

Sampling 
rate

• A lower sampling rate results 
in a lower propensity to overfit
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Boosting

how complex a relationship it can 
model

Algorithm

• Rather than fitting models to bootstrap samples of the 
data – boosting fits sequential models focusing on areas 
of poor performance

• Subsequent models correct errors of 
previous models

Advantages
 Decrease bias in predictions

Disadvantages

 May overfit the data
 Generates a “black box”
 May be sensitive to outliers and noise

Actual

Prediction

Residual

Model 1 Model 2 Model 3
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Gradient Boosted Machines (GBM)
Boosting Decision Trees

how complex a relationship it can 
model

• Introduced by Jerome Friedman (1999)
• Uses boosting to improve decision trees
• XGBoost algorithm most common

- Stochastic gradient descent
- Feature sub-sampling

 LightGBM is latest and greatest
- Much faster
- Different approach to finding splits
- Feature bundling

 GBMs can vary significantly by implementation
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Gradient Boosted Machines
Parameters

how complex a relationship it can 
model

Tree Parameters Impact and Considerations

Number of 
features to 
select at each 
node

• Prevent overfitting
• Produce more diverse trees & discover 

hidden relationships

Maximum depth • Deeper trees allow for more complex 
interactions

• Deeper trees allow for less biased
predictions

• Shallower trees result in a lower propensity 
to overfit

Minimum 
observations per 
node

• Fewer observations per node increase node 
purity

• More observations per node reduces 
propensity to overfit

Boosting
Parameters Impact and Considerations

Learning rate • A lower learning rate decreases the 
impact of any one individual tree

• Slows down the rate of fitting

Number of 
trees

• More trees result in a lower prediction 
variance

• More trees may increase the propensity 
to overfit

• Stopping criteria may limit the actual 
number of trees fit

Sampling rate • A lower sampling rate results in a lower 
propensity to overfit



© 2019 American Academy of Actuaries. All rights reserved.
May not be reproduced without express permission.

43

Neural Networks
Briefly

how complex a relationship it can 
model

 Highly flexible architecture based (loosely) on organic 
neural connections where layers of neurons are 
connected (fully or partially) to one another

 The capacity of a NN is its ability to extract feature 
representations via a composition of functions

 Activation functions for each layer determine each 
nodes state

 Weights for each layer are optimized via stochastic 
gradient descent and backpropagation

 Specialized architectures (e.g., LSTM & Convolutional) 
exist for specific tasks (e.g., sequence prediction & 
image recognition)
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Advanced Models - Regulatory Concerns

 Protected Classes
 Fitting to Noise
 Monotonicity of Continuous Variable Levels
 Intuitiveness of Discrete Variable Levels
 Reason Codes
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Protected Classes
 Examine data that machine learning algorithm is allowed to 

use
 Assess whether data could lead to identification of protected 

classes

 Examples
 Pricing model
 Examine list of variables considered by model

 Image-based models
 Ensure model only uses image data of subject matter
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Fitting to Noise

Homogeneity

Credibility

 Every risk classification system must strike 
balance between homogeneity and 
credibility

 Determine if advanced model type has 
parameters that dictate credibility of 
decisions
 GBM

 Minimum Rows: determines minimum number of 
observations needed for a split
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Monotonicity of Continuous Variables

 Monotonicity: “varying in such a way that it either never decreases or never 
increases”

 Certain continuous variables should have a monotonicity constraint applied, such 
as:
 Number of Accidents in Last Three Years
 Insurance Limit

 Modeler should apply monotonicity constraint in modeling process
 GBM

 Certain implementations of GBMs, such as XGBoost, allow for monotonicity constraints to be specified
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Intuitiveness of Discrete Variable Levels

 Example
 Multi-Policy Discount (MPD) on an Auto Policy

 Want to check for intuitive relationship between four levels of the MPD
 No other policies
 Personal Umbrella Policy
 Homeowners Policy 
 Homeowners & Personal Umbrella Policy

 Solutions
 Partial Dependence Plot
 Individual Conditional Expectations Plot
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Partial Dependence Plot
 Partial dependence function

𝑓𝑓𝑥𝑥𝑠𝑠 𝑥𝑥𝑠𝑠 =
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑐𝑐
(𝑖𝑖))

𝒇𝒇 = machine learning model
𝒙𝒙𝒔𝒔 = feature set to be plotted
𝒙𝒙𝒄𝒄

(𝒊𝒊) = actual feature values from 
dataset in which we are not 
interested
n = number of observations
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Individual Conditional Expectation
 Individual Conditional 

Expectation (ICE) plot is 
similar to PDP 
 PDP showed average effect of a 

feature across dataset
 ICE shows effect of feature on 

each observation in dataset 350
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Reason Codes
 How to educate insureds on how to lower premium?
 How to inform insureds why premium went up at renewal 

(when applicable)?
 Insurance companies can prepare information, using PDPs and ICEs, on 

variables that are likely to increase or decrease cost of insurance for 
individual insureds
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Beyond GLMs

Questions?
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PRACTICAL EXAMPLES OF 
PREDICTIVE MODELING

Predictive Modeling – Session 3
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Presenter
 Dorothy Andrews, MAAA, ASA

 Chairperson, Academy’s Data Science and Analytics 
Committee
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PREDICTIVE MODELING
PANEL DISCUSSION OF PUBLIC POLICY 

QUESTIONS

Predictive Modeling – Session 4
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Moderator
 Rich Gibson, MAAA, FCAS

 Senior Property/Casualty Fellow, American Academy 
of Actuaries
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Panelists
 Birny Birnbaum

 Center for Economic Justice
 Kevin Dyke, MAAA, FCAS

 Michigan Dept. of Insurance and Financial Services
 Mike Woods, FCAS

 Allstate
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Predictive Modeling – Public Policy

Discussion
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Contact Us

For more information, contact:
Marc Rosenberg, senior casualty policy analyst

rosenberg@actuary.org or (202) 785-7865

mailto:rosenberg@actuary.org
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